策略算法与Actor-Critic网络

news2025/1/7 7:23:37

策略算法

教程链接

DataWhale强化学习课程JoyRL

https://johnjim0816.com/joyrl-book/#/ch7/main

策略梯度

与前面的基于价值的算法不同,这类算法直接对策略本身进行近似优化。

在这种情况下,我们可以将策略描述成一个带有参数 θ θ θ的连续函数,该函数将某个状态作为输入,输出的不再是某个确定性的离散动作,而是对应的动作概率分布,通常用 π θ ( a ∣ s ) \pi_{θ}(a|s) πθ(as) 表示,称作随机性策略。

价值算法缺点

  • 无法表示连续动作

由于 DQN 等算法是通过学习状态和动作的价值函数来间接指导策略的,因此它们只能处理离散动作空间的问题,无法表示连续动作空间的问题

  • 高方差

基于价值的方法通常都是通过采样的方式来估计价值函数,这样会导致估计的方差很高,从而影响算法的收敛性。尽管一些 DQN 改进算法,通过改善经验回放、目标网络等方式,可以在一定程度上减小方差,但是这些方法并不能完全解决这个问题。

  • 探索与利用的平衡问题

DQN 等算法在实现时通常选择贪心的确定性策略,而很多问题的最优策略是随机策略,即需要以不同的概率选择不同的动作。虽然可以通过 ϵ -greedy \epsilon\text{-greedy} ϵ-greedy 策略等方式来实现一定程度的随机策略,但是实际上这种方式并不是很理想,因为它并不能很好地平衡探索与利用的关系。

策略梯度算法

特点: 直接对策略进行优化算法,但是优化目标与基于价值一样,都是累积的价值期望 V ∗ ( s ) V^{*}(s) V(s)

轨迹产生的概率:

P θ ( τ ) = p ( s 0 ) π θ ( a 0 ∣ s 0 ) p ( s 1 ∣ s 0 , a 0 ) π θ ( a 1 ∣ s 1 ) p ( s 2 ∣ s 1 , a 1 ) ⋯ = p ( s 0 ) ∏ t = 0 T π θ ( a t ∣ s t ) p ( s t + 1 ∣ s t , a t ) (9.2) \tag{9.2} \begin{aligned} P_{\theta}(\tau) &=p(s_{0}) \pi_{\theta}(a_{0} | s_{0}) p(s_{1} | s_{0}, a_{0}) \pi_{\theta}(a_{1} | s_{1}) p(s_{2} | s_{1}, a_{1}) \cdots \\ &=p(s_{0}) \prod_{t=0}^{T} \pi_{\theta}\left(a_{t} | s_{t}\right) p\left(s_{t+1} | s_{t}, a_{t}\right) \end{aligned} Pθ(τ)=p(s0)πθ(a0s0)p(s1s0,a0)πθ(a1s1)p(s2s1,a1)=p(s0)t=0Tπθ(atst)p(st+1st,at)(9.2)

基于全期望公式得到价值的期望公式

J ( π θ ) = E τ ∼ π θ [ R ( τ ) ] = P θ ( τ 1 ) R ( τ 1 ) + P θ ( τ 2 ) R ( τ 2 ) + ⋯ = ∫ τ P θ ( τ ) R ( τ ) = E τ ∼ P θ ( τ ) [ ∑ t r ( s t , a t ) ] (9.3) \tag{9.3} \begin{aligned} J(\pi_{\theta}) = \underset{\tau \sim \pi_\theta}{E}[R(\tau)] & = P_{\theta}(\tau_{1})R(\tau_{1})+P_{\theta}(\tau_{2})R(\tau_{2})+\cdots \\ &=\int_\tau P_{\theta}(\tau) R(\tau) \\ &=E_{\tau \sim P_\theta(\tau)}[\sum_t r(s_t, a_t)] \end{aligned} J(πθ)=τπθE[R(τ)]=Pθ(τ1)R(τ1)+Pθ(τ2)R(τ2)+=τPθ(τ)R(τ)=EτPθ(τ)[tr(st,at)](9.3)

由于 R ( τ ) R(\tau) R(τ)与参数 θ \theta θ无关,一来问题就稍稍简化成了如何求解 P θ ( τ ) P_{\theta}(\tau) Pθ(τ) 的梯度了

后进行一系列推导

∇ θ P θ ( τ ) = P θ ( τ ) ∇ θ P θ ( τ ) P θ ( τ ) = P θ ( τ ) ∇ θ log ⁡ P θ ( τ ) (9.4) \tag{9.4} \nabla_\theta P_{\theta}(\tau)= P_{\theta}(\tau) \frac{\nabla_\theta P_{\theta}(\tau)}{P_{\theta}(\tau) }= P_{\theta}(\tau) \nabla_\theta \log P_{\theta}(\tau) θPθ(τ)=Pθ(τ)Pθ(τ)θPθ(τ)=Pθ(τ)θlogPθ(τ)(9.4)

log ⁡ P θ ( τ ) = log ⁡ p ( s 0 ) + ∑ t = 0 T ( log ⁡ π θ ( a t ∣ s t ) + log ⁡ p ( s t + 1 ∣ s t , a t ) ) (9.5) \tag{9.5} \log P_{\theta}(\tau)= \log p(s_{0}) + \sum_{t=0}^T(\log \pi_{\theta}(a_t \mid s_t)+\log p(s_{t+1} \mid s_t,a_t)) logPθ(τ)=logp(s0)+t=0T(logπθ(atst)+logp(st+1st,at))(9.5)

∇ θ log ⁡ P θ ( τ ) = ∇ θ log ⁡ ρ 0 ( s 0 ) + ∑ t = 0 T ( ∇ θ log ⁡ π θ ( a t ∣ s t ) + ∇ θ log ⁡ p ( s t + 1 ∣ s t , a t ) ) = 0 + ∑ t = 0 T ( ∇ θ log ⁡ π θ ( a t ∣ s t ) + 0 ) = ∑ t = 0 T ∇ θ log ⁡ π θ ( a t ∣ s t ) (9.6) \tag{9.6} \begin{aligned} \nabla_\theta \log P_{\theta}(\tau) &=\nabla_\theta \log \rho_0\left(s_0\right)+\sum_{t=0}^T\left(\nabla_\theta \log \pi_\theta\left(a_t \mid s_t\right)+\nabla_\theta \log p\left(s_{t+1} \mid s_t, a_t\right)\right) \\ &=0+\sum_{t=0}^T\left(\nabla_\theta \log \pi_\theta\left(a_t \mid s_t\right)+0\right) \\ &=\sum_{t=0}^T \nabla_\theta \log \pi_\theta\left(a_t \mid s_t\right) \end{aligned} θlogPθ(τ)=θlogρ0(s0)+t=0T(θlogπθ(atst)+θlogp(st+1st,at))=0+t=0T(θlogπθ(atst)+0)=t=0Tθlogπθ(atst)(9.6)

得到目标函数的梯度

∇ θ J ( π θ ) = ∇ θ E τ ∼ π θ [ R ( τ ) ] = ∇ θ ∫ τ P θ ( τ ) R ( τ ) = ∫ τ ∇ θ P θ ( τ ) R ( τ ) = ∫ τ P θ ( τ ) ∇ θ log ⁡ P θ ( τ ) R ( τ ) = E τ ∼ π θ [ ∇ θ log ⁡ P θ ( τ ) R ( τ ) ] = E τ ∼ π θ [ ∑ t = 0 T ∇ θ log ⁡ π θ ( a t ∣ s t ) R ( τ ) ] (9.7) \tag{9.7} \begin{aligned} \nabla_\theta J\left(\pi_\theta\right) &=\nabla_\theta \underset{\tau \sim \pi_\theta}{\mathrm{E}}[R(\tau)] \\ &=\nabla_\theta \int_\tau P_{\theta}(\tau) R(\tau) \\ &=\int_\tau \nabla_\theta P_{\theta}(\tau) R(\tau) \\ &=\int_\tau P_{\theta}(\tau) \nabla_\theta \log P_{\theta}(\tau) R(\tau) \\ &=\underset{\tau \sim \pi_\theta}{\mathrm{E}}\left[\nabla_\theta \log P_{\theta}(\tau) R(\tau)\right]\\ &= \underset{\tau \sim \pi_\theta}{\mathrm{E}}\left[\sum_{t=0}^T \nabla_\theta \log \pi_\theta\left(a_t \mid s_t\right) R(\tau)\right] \end{aligned} θJ(πθ)=θτπθE[R(τ)]=θτPθ(τ)R(τ)=τθPθ(τ)R(τ)=τPθ(τ)θlogPθ(τ)R(τ)=τπθE[θlogPθ(τ)R(τ)]=τπθE[t=0Tθlogπθ(atst)R(τ)](9.7)

蒙特卡洛策略梯度算法

由于环境的初始状态为随机的,智能体的每次采样动作也是随机的,从而导致每条轨迹可能不一样。考虑采样数量足够多的轨迹,然后利用这些轨迹的平均值来近似求解目标函数的梯度。

∇ J θ ≈ 1 N ∑ n = 1 N ∑ t = 1 T n G t n ∇ log ⁡ π θ ( a t n ∣ s t n ) (9.8) \tag{9.8} \nabla J_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} G_{t}^{n} \nabla \log \pi_{\theta}\left(a_{t}^{n} \mid s_{t}^{n}\right) JθN1n=1Nt=1TnGtnlogπθ(atnstn)(9.8)

这里我们假定目标是使每回合的累积价值最大。

但是实际每回合的累积奖励或回报会受到很多因素的影响。后引入优势量来进行评估价值。

作业题

  1. 基于价值和基于策略的算法各有什么优缺点?

基于价值的算法的优点包括:

  • 可以收敛到全局最优策略,而不是局部最优。

  • 可以利用贪心策略或者epsilon-greedy策略来平衡探索和利用。

  • 可以用于离散或者连续的状态空间。

基于价值的算法的缺点包括:

  • 对于高维或者连续的动作空间,难以找到最优的动作。
  • 需要存储和更新一个大的值函数表格或者近似函数,计算量较大。
  • 不能很好地处理随机策略。

策略梯度算法优点:

  • 适配连续动作空间。在将策略函数设计的时候我们已经展开过,这里不再赘述。
  • 适配随机策略。由于策略梯度算法是基于策略函数的,因此可以适配随机策略,而基于价值的算法则需要一个确定的策略。此外其计算出来的策略梯度是无偏的,而基于价值的算法则是有偏的。

策略梯度算法缺点

  • 采样效率低。由于使用的是蒙特卡洛估计,与基于价值算法的时序差分估计相比其采样速度必然是要慢很多的,这个问题在前面相关章节中也提到过。
  • 高方差。虽然跟基于价值的算法一样都会导致高方差,但是策略梯度算法通常是在估计梯度时蒙特卡洛采样引起的高方差,这样的方差甚至比基于价值的算法还要高。
  • 收敛性差。容易陷入局部最优,策略梯度方法并不保证全局最优解,因为它们可能会陷入局部最优点。策略空间可能非常复杂,存在多个局部最优点,因此算法可能会在局部最优点附近停滞。
  • 难以处理高维离散动作空间:对于离散动作空间,采样的效率可能会受到限制,因为对每个动作的采样都需要计算一次策略。当动作空间非常大时,这可能会导致计算成本的急剧增加。
  1. 马尔可夫平稳分布需要满足什么条件?
  • 非周期性:由于马尔可夫链需要收敛,那么就一定不能是周期性的,实际上我们处理的问题基本上都是非周期性的,这点不需要做过多的考虑。
  • 状态连通性:即存在概率转移矩阵P,能够使得任意状态S0经过有限次转移到达状态s,反之亦然。
  1. REINFORCE 算法会比 Q-learning 算法训练速度更快吗?为什么?

是的。REINFORCE 算法直接优化一个参数化的策略函数,而不需要估计一个值函数.Q-learning 算法是一种基于价值的算法,它通过学习一个状态-动作值函数来评估不同动作的优劣,然后根据这个函数来选择最优的动作。

  1. 确定性策略与随机性策略的区别?
  • 确定性策略是指在每个状态下,只选择一个固定的动作,不考虑其他可能的动作。确定性策略可以用一个函数来表示,即 a = μ ( s ) a = \mu(s) a=μ(s) ,其中 a 是动作,s 是状态, μ \mu μ是策略函数。
  • 随机性策略是指在每个状态下,按照一定的概率分布来选择动作,而不是唯一确定的。随机性策略可以用一个条件概率来表示,即 π ( a ∣ s ) \pi(a|s) π(as),其中 π \pi π是策略函数,表示在状态 s 下选择动作 a 的概率。

随机性策略可以更好地探索环境,避免陷入局部最优,而确定性策略可以更高效地利用已知的信息,减少计算量。

Actor-Ctitic算法

策略梯度算法优缺点:

  • 适配连续动作空间。在将策略函数设计的时候我们已经展开过,这里不再赘述。
  • 适配随机策略。由于策略梯度算法是基于策略函数的,因此可以适配随机策略,而基于价值的算法则需要一个确定的策略。此外其计算出来的策略梯度是无偏的,而基于价值的算法则是有偏的。

但同样的,策略梯度算法也有其缺点。

  • 采样效率低。由于使用的是蒙特卡洛估计,与基于价值算法的时序差分估计相比其采样速度必然是要慢很多的,这个问题在前面相关章节中也提到过。
  • 高方差。虽然跟基于价值的算法一样都会导致高方差,但是策略梯度算法通常是在估计梯度时蒙特卡洛采样引起的高方差,这样的方差甚至比基于价值的算法还要高。
  • 收敛性差。容易陷入局部最优,策略梯度方法并不保证全局最优解,因为它们可能会陷入局部最优点。策略空间可能非常复杂,存在多个局部最优点,因此算法可能会在局部最优点附近停滞。
  • 难以处理高维离散动作空间:对于离散动作空间,采样的效率可能会受到限制,因为对每个动作的采样都需要计算一次策略。当动作空间非常大时,这可能会导致计算成本的急剧增加。

结合策略梯度与值函数的Actor-Critic算法能够同时兼顾两者的优点,甚至还能缓解两种方法都很难解决的高方差问题。

策略梯度算法高方差来源为 直接对策略参数化,相当于既要利用策略与环境进行交互采样,又要利用采样去估计策略梯度。

价值函数算法高方差来源为 需要与环境交互采样来估计值函数。

而两者结合后,Actor网络部分还是负责估计策略梯度和采样,但是Critic网络 也就是原来的值函数部分就不需要采样只负责估计值函数,并且由于它估计的值函数为策略函数的只,相当于带来了一个更稳定的估计用于指导Actor的更新,反而能够缓解策略梯度估计带来的高方差。

img

由于AC网络并不能彻底解决策略梯度算法的高方差问题,所以为了进一步缓解高方差问题,引入了一个优势函数,用来表示当前状态-动作对相当于平均水平的优势

KaTeX parse error: \tag works only in display equations

这里优势函数相当于减去了一个基线,可以自由选择,但是通常选择状态价值函数使得梯度估计更加稳定。即A2C算法。而A3C算法是在A2C基础上引入了多线程的概念提高训练效率。原先的 A2C 算法相当于只有一个全局网络并持续与环境交互更新。而 A3C 算法中增加了多个进程,每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,这样就能提高训练效率。

img

作业题

  1. 相比于 REINFORCE 算法, A2C 主要的改进点在哪里,为什么能提高速度?

A2C引入了优势函数与AC演员评论家网络。A2C 算法是一种演员-评论家算法,它引入了一个值函数作为评论家,可以在每一步或者每几步就根据优势函数来更新策略和值函数。可以衡量一个动作相对于平均水平的优劣。这些改进使得 A2C 算法能够更快地收敛到最优策略,提高了训练的速度和效果。

  1. A2C 算法是 on-policy 的吗?为什么?

什么能提高速度?

A2C引入了优势函数与AC演员评论家网络。A2C 算法是一种演员-评论家算法,它引入了一个值函数作为评论家,可以在每一步或者每几步就根据优势函数来更新策略和值函数。可以衡量一个动作相对于平均水平的优劣。这些改进使得 A2C 算法能够更快地收敛到最优策略,提高了训练的速度和效果。

  1. A2C 算法是 on-policy 的吗?为什么?

是的。 A2C 算法的目标是最大化累积回报的期望,而这个期望是基于当前的策略分布的,如果使用不同的策略分布来采样数据,那么就会导致偏差和不一致。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1260571.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

案例032:基于微信小程序的电子商城购物平台的设计与开发

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

软件测试回归测试流程

回归测试作为软件生命周期的一个组成部分,在整个软件测试过程中占有很大的工作量比重,软件开发的各个阶段都会进行多次回归测试。在渐进和快速迭代开发中,新版本的连续发布使回归测试进行的更加频繁,而在极端编程方法中&#xff0…

堆的应用:堆排序

文章目录 前言堆排序的实现(升序为例)代码 前言 堆排序,顾名思义是一个利用堆来完成排序的一个操作。在之前,小编在[C语言学习系列–>【关于qsort函数的详解以及它的模拟实现】] 谈到冒泡排序,但是冒泡排序…

CAM-Classification activation map 类激活图玩耍指南

原始论文 Learning Deep Features for Discriminative Localization 衍生论文 代码实现 torch-cam 该项目把代码打包成为了一个库,我们可以直接调用; torchcam.methods 这是上面那个项目的文档说明;

FreeRTOS任务创建及细节

目录 任务创建 简化的TCB结构体 创建任务堆栈和任务TCB 初始化任务TCB的成员 初始化任务堆栈 把新任务添加到就绪列表 任务创建 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,const char * const pcName, /*lint !e971 Unqualified char types are allowed for …

Harmony入门-HelloWorld

HarmonyOS 已经出来一些时间了。也有了OpenHarmony,作为HarmonyOS抽离的基础架构OpenHarmony,贡献给开源了,后续独立出来,那可真是就要独立生态啦,咱们顺水行舟,学习学习。 1.IDE 安装 https://hmxt.org/d…

Aapche Dubbo 不安全的 Java 反序列化 (CVE-2019-17564)

漏洞描述 Apache Dubbo 是一个高性能的、基于 Java 的开源 RPC 框架。 Apache Dubbo 支持不同的协议,它的 HTTP 协议处理程序是 Spring Framework 的 .org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter Spring Framework 的安全警告显示&am…

VS2022 配置Qt编译环境 | winows安装Qt5.14.2 | VS2017和Qt5配置成功指南

Visual Studio 2022安装教程完文本内容较多,请耐心看完,挺有收获的,要自己多尝试哦。 文章目录 # 插件安装 如果你想用VS2022来创建QT项目,那么你首先要学会下面的操作,创建一个空白解决方案,在扩展搜索qt,并且下载两个插件(带有绿√的就是)。这里其实是一个坑:VS20…

福利来了| 200多款精选简历模板免费领,让你30秒内征服HR!

找工作是不是让你很头大?尤其是写简历,真的好痛苦啊!我在网上找了好久,都没有找到合适的简历模板,自己做又不知道从哪里下手。 不过现在好了,有一个超级福利送给大家!200多款精选简历模板免费领…

231127 刷题日报

这周值班。。多少写道题吧,保持每天的手感。老婆给买了lubuladong纸质书,加油卷。 1. 131. 分割回文串 写个这个吧,钉在耻辱柱上的题。 为啥没写出来: 1. 递归树没画对 把树枝只看做是1个字母,而且不清楚树枝和节点…

键盘打字盲打练习系列之刻意练习——1

一.欢迎来到我的酒馆 盲打,刻意练习! 目录 一.欢迎来到我的酒馆二.选择一款工具三.刻意练习 二.选择一款工具 俗话说:工欲善其事必先利其器。在开始之前,我们可以选择一款练习盲打的工具。打字软件有很多,还有专门练习打字的网站&…

leetCode 77.组合 + 回溯算法 (bactracking) + 剪枝 + 图解 + 笔记

77. 组合 - 力扣(LeetCode) 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。可以按 任何顺序 返回答案。 示例 1: 输入:n 4, k 2 输出: [[2,4],[3,4],[2,3],[1,2],[1,3],[1,4], ] …

Java小游戏飞翔的小鸟

游戏界面 运行界面 开发准备 1、eclipse开发工具 二、创建游戏窗口 Mains类作为主类,在mian方法下定义一个m1()方法,设置窗口。 //定义一个初始化的游戏窗口方法 public static void m1() {//获取底层窗口界面的工具类JFrame jf new JFrame();//创建…

计算机组成原理-页式存储器

文章目录 页式存储虚拟地址vs实地址页表:逻辑页->主存块号地址交换过程地址交换过程(增加TLB)总结 页式存储 把程序分散式地放到主存的不同块的地方 虚拟地址vs实地址 操作系统将逻辑地址映射到主存块中的物理地址,对应的物…

测试也应该具备的项目管理能力

前言 前几天在技术交流群有同学问到:“需求不明确&测试时间不足,经常加班,交付质量也不太好,该如何处理”? 群里其他同学很热心的给出了分析和建议,比如: 评估是否是技术问题&#xff0c…

报表生成器Stimulsoft用户手册:深入报告

Stimulsoft Reports 是一款报告编写器,主要用于在桌面和Web上从头开始创建任何复杂的报告。可以在大多数平台上轻松实现部署,如ASP.NET, WinForms, .NET Core, JavaScript, WPF, Angular, Blazor, PHP, Java等,在你的应用程序中嵌入报告设计器…

echarts 水波图

echarts 水波图 安装 npm install echarts --save npm install echarts-liquidfill --save引入 import * as echarts from echarts; import echarts-liquidfill;html <div id"chart1" ref"chart1" class"chart1"></div>css .cha…

echarts散点图(象限图)设置不同的颜色

如图所示&#xff1a; <template><div ref"sdtcmijy" :style"{height:scrollerHeight}"></div> </template> <script> import {getXxt} from ./../requestAPI.jsexport default {data(){return {params:{},seriesData:[],…

深入解析:Peft Adapter与LLM融合

在增量预训练阶段或有监督微调阶段使用高效微调方法(Lora)时会产生adapter文件,相当于是一个“补丁”。那么如何将“补丁”与原始模型合并呢? 下面将对模型合并代码进行解读。 相关代码将全部上传到github: https://github.com/hjandlm/LLM_Train 欢迎关注公众号 代码…

数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树

目录 前言实现红黑树的基本思想插入操作的平衡调整删除操作的平衡调整解答开篇内容小结 前言 本节课程思维导图&#xff1a; 红黑树是一个让我又爱又恨的数据结构&#xff0c;“爱”是因为它稳定、高效的性能&#xff0c;“恨”是因为实现起来实在太难了。对于绝大部分开发工程…