大模型下交互式数据挖掘的探索与发现

news2024/11/26 12:38:01

在这个数据驱动的时代,数据挖掘已成为解锁信息宝库的关键。过去,我们依赖传统的拖拉拽方式来建模,这种方式在早期的数据探索中起到了作用,但随着数据量的激增和需求的多样化,它的局限性逐渐显露。

>>>> 首先,操作复杂性

传统方法通常要求用户具备深厚的技术背景,包括对各种工具和编程语言的了解、数据挖掘各个环节的掌握、各个节点参数的设置等。这不仅限制了非技术人员的参与,也使得数据挖掘成为一个时间消耗巨大的任务。

>>>> 其次,灵活性不足

在处理多变的数据类型和复杂的分析需求时,传统方法往往受限于挖掘平台的功能,如果功能不具备或功能不足以满足需求,则需要通过纯代码的方式进行编译。另外,用户需要不断调整和优化数据,以达到理想的模型效果,这一过程既繁琐又耗时。

>>>> 最后,效率低下

从数据准备到模型构建,再到结果解释,整个过程充满了重复和等待。这不仅影响了数据挖掘的效率,也限制了其在快速变化的商业环境中的应用。

而今,随着人工智能技术的飞速发展,一种新的解决方案——用大模型进行数据挖掘,正悄然崛起。类似ChartGPT的大模型,已经日渐成熟,不仅仅是工具的升级换代,它代表着一种全新的思维方式。在大模型的世界里,复杂的数据处理变得触手可及。通过简单的语言指令,我们可以轻松建立和调整数据模型,这不仅使操作变得简便,更重要的是,它打开了一扇通往更高效、更灵活数据处理世界的大门。

本文中,我们将一起探索ChartGPT4.0如何优雅地解决传统方法的痛点,带领我们进入数据挖掘的新纪元。从直观的操作界面到智能化的数据分析,我们将深入了解ChartGPT4.0如何在实际应用中展现其独特的魅力,开启交互式数据挖掘的新篇章。

Step 1 数据探索

数据概览  数值型变量描述性统计

场景:

  • 数据读取:直接上传数据,不对数据内容、格式和结构做任何的描述,要求读取数据

  • 数据探索:用一句话需求,要求平台对数据进行探索

  • 数据分布:要求平台画图展示某个指标的数据分布

目标:

  • 探索平台的自动化能力

  • 探索平台对“一句话需求”的理解和执行能力

  • 探索平台的数据可视化能力

探索与发现:

  • 自动化:上传数据后,平台根据数据格式自动读取和解析数据,无需任何指令、参数和说明

  • 一句话需求:“请对这份数据进行数据探索”。平台可以精准理解用户的需求,并且根据自身的知识储备,拆解成6类数据探索操作,这六类数据探索操作十分专业

  • 专业术语:非数值型数据。平台可以精准理解专业术语,并根据要求执行非数值型数据发现

  • 图表能力:字段分布。平台可以精准理解图表需求,并精准的将图表输出。

Step 2 数据预处理

数据清洗(处理缺失值和重复值)  删除字段  WOE编码

场景:

  • 处理缺失值:要求平台识别有缺失的字段,并根据平台的自身知识自动处理

  • 处理重复值:要求平台识别数据集中的重复行,并根据平台的自身知识自动处理

  • 布离散型变量WOE编码:要求平台自行识别离散型变量,并进行WOE编码

目标:

  • 探索平台的专业数据处理能力

探索与发现:

  • 问题自愈能力:建模过程中出现了运行错误,平台会根据错误提示进行问题自愈处理,无需人工干预,十分智能。

Step 3 特征工程

特征筛选

场景:

  • 特征筛选:要求平台根据指定的、较为复杂的(需训练模型)的方式进行特征筛选

  • 特征重要性可视化:要求平台识根据特征重要性,可视化TOP n 重要特征

目标:

  • 探索平台的复杂指令识别与处理能力

探索与发现:

  • 复杂的指令:特征工程环节,我们对平台发布了复杂的作业指令,平台可以准确拆解指令并精准执行,期间遇到运行错误,自愈能力表现优秀。

Step 4 模型训练

数据抽样  模型训练  模型测试

场景:

  • 数据抽样:要求平台根据要求进行数据抽样

  • 模型训练:要求平台根据指定的算法进行模型训练

目标:

  • 探索平台训练模型的专业能力

探索与发现:

  • 专业性:在训练模型的过程中,平台自动设置最大迭代次数,并在运行后自动识别迭代次数达到最大模型是否收敛,并告知用户,既专业又贴心。

我们已经详细探讨了如何利用先进的大模型技术,如ChartGPT4.0,来极大地提升数据挖掘的效率和深度,见证了这一平台自动化处理数据的能力、对于一般性和专业性指令的高度理解、图表生成的精确性,以及面对错误时的自我修复能力。通过对这些技术进展的剖析,可以预见一个越来越自动化、智能化的未来,在这个未来中,数据的价值将以前所未有的速度被挖掘和实现。

正如本文所展示的,这些进步不仅优化了数据科学家的工作流程,也为业务决策者提供了强有力的支持。交互式数据挖掘使得非技术人员也能够进行复杂的数据分析与挖掘,从而降低了数据科学的门槛。同时,随着平台自愈能力的增强,连续的运营成为可能,进一步保证了数据分析与挖掘任务的稳定性和可靠性。

交互式数据挖掘时代,已经悄然来临。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1260009.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

selenium已知一个元素定位同级别的另一个元素

1.需求与实际情况 看下图来举例 (1)需求 想点击test22(即序号-第9行)这一行中右边的“复制”这一按钮 (2)实际情况 只能通过id或者class定位到文件名这一列的元素,而操作这一列的元素是不…

知识变现的未来:解析知识付费系统的核心

随着数字时代的发展,知识付费系统作为一种新兴的学习和知识分享模式,正逐渐引领着知识变现的未来。本文将深入解析知识付费系统的核心技术,揭示其在知识经济时代的重要性和潜力。 1. 知识付费系统的基本架构 知识付费系统的核心在于其灵活…

为什么要用 Redis 而不用 map/guava 做缓存? Redis为什么这么快 Redis有哪些数据类型 Redis的应用场景

文章目录 为什么要用 Redis 而不用 map/guava 做缓存?Redis为什么这么快Redis有哪些数据类型Redis的应用场景总结一计数器缓存会话缓存全页缓存(FPC)查找表消息队列(发布/订阅功能)分布式锁实现 总结二 简单的聊聊Redis常见的一些疑问点:具体…

预算削减与经济动荡:2024 年明智且经济地创新

如何在经济衰退周期中保持创新?这篇创新研究提供了实用建议。在经济下行压力下领导者往往会试图降低成本和维持生存。然而,这种二元对立的压力往往会导致领导者做出不够理想的决策,更多地关注生存而不是未来投资。本文提供了一系列实用的建议…

蓝桥杯-平方和(599)

【题目】平方和 【通过测试】代码 import java.util.Scanner; import java.util.ArrayList; import java.util.List; // 1:无需package // 2: 类名必须Main, 不可修改public class Main {public static void main(String[] args) {Scanner scan = new Scanner(System.in);//在…

MATLAB中FFT频谱分析使用详解

文章目录 语法说明语法一:Y fft(X)fft(X)返回X长度的傅里叶变换 语法二:Y fft(X,N)如果 X的长度小于 N,则为 X补上尾零以达到长度 N(FFT插值)双边谱转换为单边谱 如果 X 的长度大于 N,则对 X 进行截断以达到长度 N。 语法三&…

根据密码构成规则检测密码字符串

从键盘输入密码字符串,程序根据给定密码构成规则检测并给出对应提示。 (笔记模板由python脚本于2023年11月27日 19:27:47创建,本篇笔记适合熟悉Python字符串str对象的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.…

ViLT 论文精读【论文精读】

ViLT 论文精读【论文精读】_哔哩哔哩_bilibili 目录 ViLT 论文精读【论文精读】_哔哩哔哩_bilibili 1 地位 2 ViLT做了什么能让它成为这种里程碑式的工作? 3 ViLT到底把模型简化到了什么程度?到底能加速到什么程度? 2.1 过去的方法是怎…

C++之算术生成算法

C之算术生成算法 accumulate #include<iostream> using namespace std; #include<vector> #include<numeric>void test() {vector<int> v;for (int i 0; i < 10; i){v.push_back(i);}int total accumulate(v.begin(), v.end(),0);cout << t…

论文公式工具

论文公式工具 https://www.latexlive.com/home## 论文图片识别公式网页工具&#xff0c;免费的方便但是有限制次数&#xff0c;一天只能用三次公式图片识别。 先注册登录 我们到论文中截取一张图片 在识别得到的一串码中&#xff0c;删掉前面没用的 输出为这个格式&#x…

从零构建属于自己的GPT系列1:预处理模块(逐行代码解读)、文本tokenizer化

1 训练数据 在本任务的训练数据中&#xff0c;我选择了金庸的15本小说&#xff0c;全部都是txt文件 数据打开后的样子 数据预处理需要做的事情就是使用huggingface的transformers包的tokenizer模块&#xff0c;将文本转化为token 最后生成的文件就是train_novel.pkl文件&a…

【MATLAB】LMD分解+FFT+HHT组合算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 LMDFFTHHT组合算法是一种基于局部均值分解&#xff08;LMD&#xff09;、快速傅里叶变换&#xff08;FFT&#xff09;和希尔伯特-黄变换&#xff08;HHT&#xff09;的组合算法。 LMD是…

什么是数据增强,为什么会让模型更健壮?

在做一些图像分类训练任务时&#xff0c;我们经常会遇到一个很尴尬的情况&#xff0c;那就是&#xff1a; 明明训练数据集中有很多可爱猫咪的照片&#xff0c;但是当我们给训练好的模型输入一张戴着头盔的猫咪进行测试时&#xff0c;模型就不认识了&#xff0c;或者说识别精度…

87基于matlab的双卡尔曼滤波算法

基于matlab的双卡尔曼滤波算法。第一步使用了卡尔曼滤波算法&#xff0c;用电池电压来修正SOC&#xff0c;然后将修正后的SOC作为第二个卡尔曼滤波算法的输入&#xff0c;对安时积分法得到的SOC进行修正&#xff0c;最终得到双卡尔曼滤波算法SOC估计值。结合EKF算法和安时积分法…

企业联系方式真的那么难获取吗?

企业联系方式的重要性&#xff0c;相信每一个销售人员都是知道的。对于销售来说&#xff0c;获取准确、全面的企业联系方式&#xff0c;无疑是开发客户的基础与保障&#xff0c;任凭能力再高&#xff0c;说服能力多强&#xff0c;没有与客户接触的机会&#xff0c;这些都是无稽…

CAN总线星型连接器及特点

CAN总线星型连接特点 CAN总线是一种广泛应用于汽车、工业自动化、家庭等领域的现场总线技术。它具有高速度、高可靠性、灵活性等特点&#xff0c;被广泛应用于汽车电子、工业自动化、家庭自动化等领域。在CAN总线的实际应用中&#xff0c;其连接方式可以是星型或菊花型。本文将…

Pycharm在debug问题解决方案

Pycharm在debug问题解决方案 前言一、Frames are not available二、查看变量时一直显示collecting data并显示不了任何内容 前言 Pycharm在debug时总是出现一些恼人的问题&#xff0c;以下是博主在训练中遇到的问题及在网上找到的可用解决方案&#xff1a; 一、Frames are not…

自己动手写编译器:golex 和 flex 比较研究 2

上一节我们运行了 gcc 使用的词法解析器&#xff0c;使用它从.l 文件中生成对应的词法解析程序。同时我们用相同的词法规则对 golex 进行测试&#xff0c;发现 golex 同样能实现相同功能&#xff0c;当然这个过程我们也发现了 golex 代码中的不少 bug&#xff0c;本节我们继续对…

基于单片机病房呼叫程序和仿真

如果学弟学妹们在毕设方面有任何问题&#xff0c;随时可以私信我咨询哦&#xff0c;有问必答&#xff01;学长专注于单片机相关的知识&#xff0c;可以解决单片机设计、嵌入式系统、编程和硬件等方面的难题。 愿毕业生有力&#xff0c;陪迷茫着前行&#xff01; 一、系统方案 1…

程序员必读之软件架构书摘

程序员必读之软件架构书摘 什么是架构 "架构"作为名词的一种理解&#xff1a; 从产品整体考虑&#xff0c;采用一定的结构&#xff0c;将产品分解为一系列组件、模块和交互。 比如考虑处理软件的安全、配置、错误处理等横切关注点的基础设施服务。 "架构&q…