Redis大key与热Key

news2024/11/18 4:48:55

什么是 bigkey?
简单来说,如果一个 key 对应的 value 所占用的内存比较大,那这个 key 就可以看作是 bigkey。具体多大才算大呢?有一个不是特别精确的参考标准:

在这里插入图片描述
bigkey 是怎么产生的?有什么危害?
bigkey 通常是由于下面这些原因产生的:

程序设计不当,比如直接使用 String 类型存储较大的文件对应的二进制数据。
对于业务的数据规模考虑不周到,比如使用集合类型的时候没有考虑到数据量的快速增长。
未及时清理垃圾数据,比如哈希中冗余了大量的无用键值对。
bigkey 除了会消耗更多的内存空间和带宽,还会对性能造成比较大的影响。

在 Redis 常见阻塞原因总结[1]这篇文章中我们提到:大 key 还会造成阻塞问题。具体来说,主要体现在下面三个方面:

客户端超时阻塞:由于 Redis 执行命令是单线程处理,然后在操作大 key 时会比较耗时,那么就会阻塞 Redis,从客户端这一视角看,就是很久很久都没有响应。
网络阻塞:每次获取大 key 产生的网络流量较大,如果一个 key 的大小是 1 MB,每秒访问量为 1000,那么每秒会产生 1000MB 的流量,这对于普通千兆网卡的服务器来说是灾难性的。
工作线程阻塞:如果使用 del 删除大 key 时,会阻塞工作线程,这样就没办法处理后续的命令。
大 key 造成的阻塞问题还会进一步影响到主从同步和集群扩容。

综上,大 key 带来的潜在问题是非常多的,我们应该尽量避免 Redis 中存在 bigkey。

如何发现 bigkey?
1、使用 Redis 自带的 --bigkeys 参数来查找。

# redis-cli -p 6379 --bigkeys

# Scanning the entire keyspace to find biggest keys as well as
# average sizes per key type.  You can use -i 0.1 to sleep 0.1 sec
# per 100 SCAN commands (not usually needed).

[00.00%] Biggest string found so far '"ballcat:oauth:refresh_auth:f6cdb384-9a9d-4f2f-af01-dc3f28057c20"' with 4437 bytes
[00.00%] Biggest list   found so far '"my-list"' with 17 items

-------- summary -------

Sampled 5 keys in the keyspace!
Total key length in bytes is 264 (avg len 52.80)

Biggest   list found '"my-list"' has 17 items
Biggest string found '"ballcat:oauth:refresh_auth:f6cdb384-9a9d-4f2f-af01-dc3f28057c20"' has 4437 bytes

1 lists with 17 items (20.00% of keys, avg size 17.00)
0 hashs with 0 fields (00.00% of keys, avg size 0.00)
4 strings with 4831 bytes (80.00% of keys, avg size 1207.75)
0 streams with 0 entries (00.00% of keys, avg size 0.00)
0 sets with 0 members (00.00% of keys, avg size 0.00)
0 zsets with 0 members (00.00% of keys, avg size 0.00

从这个命令的运行结果,我们可以看出:这个命令会扫描(Scan) Redis 中的所有 key ,会对 Redis 的性能有一点影响。并且,这种方式只能找出每种数据结构 top 1 bigkey(占用内存最大的 String 数据类型,包含元素最多的复合数据类型)。然而,一个 key 的元素多并不代表占用内存也多,需要我们根据具体的业务情况来进一步判断。

在线上执行该命令时,为了降低对 Redis 的影响,需要指定 -i 参数控制扫描的频率。redis-cli -p 6379 --bigkeys -i 3 表示扫描过程中每次扫描后休息的时间间隔为 3 秒。

2、使用 Redis 自带的 SCAN 命令

SCAN 命令可以按照一定的模式和数量返回匹配的 key。获取了 key 之后,可以利用 STRLEN、HLEN、LLEN等命令返回其长度或成员数量。
在这里插入图片描述
对于集合类型还可以使用 MEMORY USAGE 命令(Redis 4.0+),这个命令会返回键值对占用的内存空间。

3、借助开源工具分析 RDB 文件。

通过分析 RDB 文件来找出 big key。这种方案的前提是你的 Redis 采用的是 RDB 持久化。

网上有现成的代码/工具可以直接拿来使用:

redis-rdb-tools[2]:Python 语言写的用来分析 Redis 的 RDB 快照文件用的工具
rdb_bigkeys[3] : Go 语言写的用来分析 Redis 的 RDB 快照文件用的工具,性能更好。
4、借助公有云的 Redis 分析服务。

如果你用的是公有云的 Redis 服务的话,可以看看其是否提供了 key 分析功能(一般都提供了)。

这里以阿里云 Redis 为例说明,它支持 bigkey 实时分析、发现,文档地址:https://www.alibabacloud.com/help/zh/apsaradb-for-redis/latest/use-the-real-time-key-statistics-feature 。
在这里插入图片描述
如何处理 bigkey?
bigkey 的常见处理以及优化办法如下(这些方法可以配合起来使用):

分割 bigkey:将一个 bigkey 分割为多个小 key。例如,将一个含有上万字段数量的 Hash 按照一定策略(比如二次哈希)拆分为多个 Hash。
手动清理:Redis 4.0+ 可以使用 UNLINK 命令来异步删除一个或多个指定的 key。Redis 4.0 以下可以考虑使用 SCAN 命令结合 DEL 命令来分批次删除。
采用合适的数据结构:例如,文件二进制数据不使用 String 保存、使用 HyperLogLog 统计页面 UV、Bitmap 保存状态信息(0/1)。
开启 lazy-free(惰性删除/延迟释放) :lazy-free 特性是 Redis 4.0 开始引入的,指的是让 Redis 采用异步方式延迟释放 key 使用的内存,将该操作交给单独的子线程处理,避免阻塞主线程。

什么是 hotkey?
如果一个 key 的访问次数比较多且明显多于其他 key 的话,那这个 key 就可以看作是 hotkey(热 Key)。例如在 Redis 实例的每秒处理请求达到 5000 次,而其中某个 key 的每秒访问量就高达 2000 次,那这个 key 就可以看作是 hotkey。

hotkey 出现的原因主要是某个热点数据访问量暴增,如重大的热搜事件、参与秒杀的商品。

hotkey 有什么危害?
处理 hotkey 会占用大量的 CPU 和带宽,可能会影响 Redis 实例对其他请求的正常处理。此外,如果突然访问 hotkey 的请求超出了 Redis 的处理能力,Redis 就会直接宕机。这种情况下,大量请求将落到后面的数据库上,可能会导致数据库崩溃。

因此,hotkey 很可能成为系统性能的瓶颈点,需要单独对其进行优化,以确保系统的高可用性和稳定性。

如何发现 hotkey?
1、使用 Redis 自带的 --hotkeys 参数来查找。

Redis 4.0.3 版本中新增了 hotkeys 参数,该参数能够返回所有 key 的被访问次数。

使用该方案的前提条件是 Redis Server 的 maxmemory-policy 参数设置为 LFU 算法,不然就会出现如下所示的错误。

# redis-cli -p 6379 --hotkeys

# Scanning the entire keyspace to find hot keys as well as
# average sizes per key type.  You can use -i 0.1 to sleep 0.1 sec
# per 100 SCAN commands (not usually needed).

Error: ERR An LFU maxmemory policy is not selected, access frequency not tracked. Please note that when switching between policies at runtime LRU and LFU data will take some time to adjust.

Redis 中有两种 LFU 算法:

volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰。
allkeys-lfu(least frequently used):当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的 key。
以下是配置文件 redis.conf 中的示例:

# 使用 volatile-lfu 策略
maxmemory-policy volatile-lfu

# 或者使用 allkeys-lfu 策略
maxmemory-policy allkeys-lfu

需要注意的是,hotkeys 参数命令也会增加 Redis 实例的 CPU 和内存消耗(全局扫描),因此需要谨慎使用。

2、使用MONITOR 命令。

MONITOR 命令是 Redis 提供的一种实时查看 Redis 的所有操作的方式,可以用于临时监控 Redis 实例的操作情况,包括读写、删除等操作。

由于该命令对 Redis 性能的影响比较大,因此禁止长时间开启 MONITOR(生产环境中建议谨慎使用该命令)。

# redis-cli
127.0.0.1:6379> MONITOR
OK
1683638260.637378 [0 172.17.0.1:61516] "ping"
1683638267.144236 [0 172.17.0.1:61518] "smembers" "mySet"
1683638268.941863 [0 172.17.0.1:61518] "smembers" "mySet"
1683638269.551671 [0 172.17.0.1:61518] "smembers" "mySet"
1683638270.646256 [0 172.17.0.1:61516] "ping"
1683638270.849551 [0 172.17.0.1:61518] "smembers" "mySet"
1683638271.926945 [0 172.17.0.1:61518] "smembers" "mySet"
1683638274.276599 [0 172.17.0.1:61518] "smembers" "mySet2"
1683638276.327234 [0 172.17.0.1:61518] "smembers" "mySet"

在发生紧急情况时,我们可以选择在合适的时机短暂执行 MONITOR 命令并将输出重定向至文件,在关闭 MONITOR 命令后通过对文件中请求进行归类分析即可找出这段时间中的 hotkey。

3、借助开源项目。

京东零售的 hotkey 这个项目不光支持 hotkey 的发现,还支持 hotkey 的处理
在这里插入图片描述
4、根据业务情况提前预估。

可以根据业务情况来预估一些 hotkey,比如参与秒杀活动的商品数据等。不过,我们无法预估所有 hotkey 的出现,比如突发的热点新闻事件等。

5、业务代码中记录分析。

在业务代码中添加相应的逻辑对 key 的访问情况进行记录分析。不过,这种方式会让业务代码的复杂性增加,一般也不会采用。

6、借助公有云的 Redis 分析服务。

如果你用的是公有云的 Redis 服务的话,可以看看其是否提供了 key 分析功能(一般都提供了)。

这里以阿里云 Redis 为例说明,它支持 hotkey 实时分析、发现,文档地址:https://www.alibabacloud.com/help/zh/apsaradb-for-redis/latest/use-the-real-time-key-statistics-feature 。
在这里插入图片描述
如何解决 hotkey?
hotkey 的常见处理以及优化办法如下(这些方法可以配合起来使用):

读写分离:主节点处理写请求,从节点处理读请求。
使用 Redis Cluster:将热点数据分散存储在多个 Redis 节点上。
二级缓存:hotkey 采用二级缓存的方式进行处理,将 hotkey 存放一份到 JVM 本地内存中(可以用 Caffeine)。
除了这些方法之外,如果你使用的公有云的 Redis 服务话,还可以留意其提供的开箱即用的解决方案。

这里以阿里云 Redis 为例说明,它支持通过代理查询缓存功能(Proxy Query Cache)优化热点 Key 问题。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1252701.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

3.2 CPU的自动化

CPU的自动化 改造1-使用2进制导线改造2根据整体流程开始改造指令分析指令MOV_A的开关2进制表格手动时钟gif自动时钟gif 根据之前的CPU内部结构改造,制造一个cpu控制单元 改造一 之前的CPU全由手动开关自己控制,极度繁琐,而开关能跟二进制一一对应, 开:1, 关:0图1是之前的, …

2017年7月13日 Go生态洞察:向Go 2迈进

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

手撕AVL_二叉平衡树(图文并茂)

目录 前言 一 . AVL树的概念 二 . AVL树节点的定义 三 . AVL树的插入 1.插入节点 2.调节负载因子 四 . AVL树的旋转 1.左单旋 2.左右双旋 五 . AVL树性能分析 总结 前言 大家好,今天带大加手撕AVL树的插入 一 . AVL树的概念 二叉搜索树虽可以缩短查找的效率&#x…

process control 化学工程 需要用到MATLAB的Simulink功能

process control 化学工程 需要用到MATLAB的Simulink功能 所有问题需要的matlab simulink 模型 WeChat: ye1-6688 The riser tube brings in contact the recirculating catalyst with the feed oil, which then vaporizes and splits to lighter components as it flows up th…

【ArcGIS Pro微课1000例】0038:基于ArcGIS Pro的人口密度分析与制图

文章目录 一、人口密度二、人口密度分析1. 点密度分析2. 核密度分析三、结果比对一、人口密度 人口密度是指单位土地面积上居住的人口数,通常以每平方千米或每公顷内的常住人口为单位计算。人口密度同资源、经济密切结合,因此,科学准确地分析人口密度的分布情况,对合理制定…

当你准备开始学习 Java 时,确保已完成以下准备工作,安装Java开发环境并验证通过。

当你准备开始学习 Java 时,确保已完成以下准备工作: a. 安装Java开发环境 下载Java Development Kit (JDK): 访问Oracle官方网站,选择适用于你操作系统的JDK版本,点击下载。 安装JDK: 下载完成后&#xf…

window获取密码工具

工具getpass.exe 运行输出密码到5.txt 工具gethashes.exe 运行之后输入到6.txt,会得到一个$local 再运行gethashes.exe $local 可以看到加密的账户密码,用工具进行解密就可以得到密码 工具pwdump7 还有其他的mimikatz,msf工具都可以获取。

如何把自己银行卡里的钱转账充值到自己支付宝上?

原文来源:https://www.caochai.com/article-4524.html 支付宝余额是支付宝核心功能之一,主要用于网购支付、线下支付、转账等场景。用户可以将银行卡、余额宝等资金转入或转出至支付宝余额,实现快速转账和支付。 如何把自己银行卡里的钱转账…

案例-某验四代滑块反爬逆向研究二

系列文章目录 第一部分 案例-某验四代滑块反爬逆向研究一 第二部分 案例-某验四代滑块反爬逆向研究二 文章目录 系列文章目录前言一、js文件加载先后顺序二、每次刷新都会初始化 device_id, 所以追栈可以知道它从哪执行的三、删除node中的检测点(vm忽视&#xff09…

【一文讲清楚 Anaconda 相关环境配置】

文章目录 0 前言1 Package 与环境1.1 module1.2 package1.3 环境 2 Conda、Miniconda、Anaconda和Pip & PyPI2.1 Conda2. 2 Miniconda2.3 Anaconda2.3.1 Anaconda Navigator2.3.2 Anaconda PowerShell Prompt & Anaconda Prompt2.3.3 Jupyter notebook 2.4 Pip & P…

深信服实验学习笔记——nmap常用命令

文章目录 1. 主机存活探测2. 常见端口扫描、服务版本探测、服务器版本识别3. 全端口&#xff08;TCP/UDP&#xff09;扫描4. 最详细的端口扫描5. 三种TCP扫描方式 1. 主机存活探测 nmap -sP <靶机IP>-sP代表 2. 常见端口扫描、服务版本探测、服务器版本识别 推荐加上-v参…

PTA NeuDS-数据库题目集

一.判断题 1.在数据库中产生数据不一致的根本原因是冗余。T 解析&#xff1a;数据冗余是数据库中产生数据不一致的根本原因&#xff0c;因为当同一数据存储在多个位置时&#xff0c;如果其中一个位置的数据被修改&#xff0c;其他位置的数据就不一致了。因此&#xff0c;在数据…

【测试开发工程师】TestNG测试框架零基础入门(上)

哈喽大家好&#xff0c;我是小浪。那么今天是一期基于JavaTestNG测试框架的入门教学的博客&#xff0c;从只会手工测试提升到自动化测试&#xff0c;这将对你的测试技术提升是非常大的&#xff0c;有助于我们以后在找工作、面试的时候具备更大的竞争力~ 文章目录 一、什么是T…

【数据结构实验】排序(二)希尔排序算法的详细介绍与性能分析

文章目录 1. 引言2. 希尔排序算法原理2.1 示例说明2.2 时间复杂性分析 3. 实验内容3.1 实验题目&#xff08;一&#xff09;输入要求&#xff08;二&#xff09;输出要求 3.2 算法实现3.3 代码解析3.4 实验结果 4. 实验结论 1. 引言 排序算法在计算机科学中扮演着至关重要的角色…

坚鹏:中国银联公司银行业前沿技术介绍及其数据分析方法实战培训

中国银联公司银行业前沿技术介绍及其数据分析方法实战培训圆满结束 ——借力数字化技术实现基于场景的精准化、场景化、智能化营销 中国银联公司&#xff08;China UnionPay&#xff09;成立于2002年3月&#xff0c;是经国务院同意&#xff0c;中国人民银行批准&#xff0c;在合…

一种太阳能风能市电互补路灯方案介绍

太阳能市电互补路灯是一种环保、节能的照明设施&#xff0c;它利用太阳能进行发电并实现照明。这种路灯在白天吸收阳光并将其转化为电能&#xff0c;到了晚上则利用储存的电能为LED灯提供电力&#xff0c;实现照明功能。下面叁仟智慧将详细介绍太阳能市电互补路灯灯的工作原理和…

人工智能|机器学习——循环神经网络的简洁实现

循环神经网络的简洁实现 如何使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型。 我们仍然从读取时光机器数据集开始。 import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2lbatch_size, num_steps 32, 35 t…

4-20mA高精度采集方案

下载链接&#xff01;https://mp.weixin.qq.com/s?__bizMzU2OTc4ODA4OA&mid2247557466&idx1&snb5a323285c2629a41d2a896764db27eb&chksmfcfaf28dcb8d7b9bb6211030d9bda53db63ab51f765b4165d9fa630e54301f0406efdabff0fb&token976581939&langzh_CN#rd …

明道云伙伴成果与展望

摘要&#xff1a;这篇文章介绍了明道云在过去一年的成果以及未来的计划。明道云将把更多资源和精力投入到伙伴身上&#xff0c;提供更全面的支持&#xff0c;包括产品特性、展业支持和 GTM &#xff08;Go-To-Market&#xff09;支持三个方面。在产品特性方面&#xff0c;明道云…

【数据结构实验】排序(一)冒泡排序改进算法 Bubble及其性能分析

文章目录 1. 引言2. 冒泡排序算法原理2.1 传统冒泡排序2.2 改进的冒泡排序 3. 实验内容3.1 实验题目&#xff08;一&#xff09;输入要求&#xff08;二&#xff09;输出要求 3.2 算法实现 4. 实验结果5. 实验结论 1. 引言 排序算法是计算机科学中一个重要而基础的研究领域&…