RevCol实战:使用RevCol实现图像分类任务(一)

news2024/10/5 19:16:53

文章目录

  • 摘要
  • 安装包
    • 安装timm
  • 数据增强Cutout和Mixup
  • EMA
  • 项目结构
  • 计算mean和std
  • 生成数据集

摘要

可逆柱状结构(RevCol)是一种网络结构,它受到GLOM(Global Columnar Memory)的启发。RevCol由N个子网络(或称为列)组成,每个子网络的结构和功能都是相同的。这种结构可以有效地解决信息崩溃的问题,通过在前面的列中添加额外的监督,以保持特征和输入图像之间的互信息。此外,RevCol可以逐渐解耦语义和低级信息,从而提取和利用任务相关信息来进一步提高性能。在实现上,对于中间监督,采用了加权求和的方式将两个损失合并,对于所有变体的RevCol,通过实验确定将监督头添加到特定的列中。

在这里插入图片描述

可逆柱状结构在图像处理中的优势主要体现在以下几个方面:

结构灵活性:可逆柱状结构具有灵活的结构,可以适应各种尺寸和形状的任务,而不会像其他网络结构一样受到固定形状的限制。
信息保留:可逆柱状结构可以更好地保留图像的信息,包括高层次的语义信息和低层次的细节信息。这使得网络可以更好地适应各种复杂的任务,比如语义分割、物体检测等。
计算效率:由于可逆柱状结构的独特性,可以在计算过程中更有效地利用硬件资源,从而提高计算效率。此外,这种结构也有助于减少计算量,从而使得训练和推断过程更快。
泛化能力:可逆柱状结构还可以提高网络的泛化能力。这种结构使得网络可以更好地捕捉到图像的本质特征,从而在面对新的任务时能够更好地适应。
参数优化:可逆柱状结构有助于优化网络的参数。由于这种结构的特性,使得网络在训练过程中可以更快地收敛,从而节省训练时间,并且可以得到更优的网络性能。

多级可逆单元在图像分类、目标检测、图像文本标记、语义分割等任务中表现出了优秀的性能。

在图像分类任务中,多级可逆单元能够学习到更丰富的特征表示,从而提高了分类的准确性。通过可逆连接的设计,该单元能够同时捕获高层次和低层次的特征信息,从而在分类时考虑更多的因素。此外,多级可逆单元还可以通过共享参数的方式减少模型的复杂度,提高模型的泛化能力。
在这里插入图片描述

在目标检测任务中,多级可逆单元可以结合目标的位置和形状信息,从而更准确地检测出目标物体。由于该单元的可逆性,它可以适应不同的输入尺寸和形状,从而提高了目标检测的鲁棒性。此外,多级可逆单元还可以通过与卷积神经网络(CNN)相结合的方式,进一步提高了目标检测的性能。

在图像文本标记任务中,多级可逆单元可以结合图像和文本信息,从而更准确地识别和提取图像中的文本信息。该单元的可逆性使得它可以适应不同的文本样式和字体变化,从而提高了文本提取的准确性。此外,多级可逆单元还可以通过端到端训练的方式,进一步优化了图像文本标记的性能。

在语义分割任务中,多级可逆单元可以结合图像的全局和局部信息,从而更准确地分割出图像中的不同语义区域。该单元的可逆性使得它可以适应不同的图像内容和场景变化,从而提高了语义分割的准确性。此外,多级可逆单元还可以通过与CNN或其他深度学习模型相结合的方式,进一步提高了语义分割的性能。

这篇文章使用RevCol完成植物分类任务,模型采用revcol_tiny向大家展示如何使用RevCol。revcol_tiny在这个数据集上实现了96+%的ACC,如下图:

在这里插入图片描述

在这里插入图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现RevCol模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(
    mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
    prob=0.1, switch_prob=0.5, mode='batch',
    label_smoothing=0.1, num_classes=12)
 criterion_train = SoftTargetCrossEntropy()

Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn

_logger = logging.getLogger(__name__)

class ModelEma:
    def __init__(self, model, decay=0.9999, device='', resume=''):
        # make a copy of the model for accumulating moving average of weights
        self.ema = deepcopy(model)
        self.ema.eval()
        self.decay = decay
        self.device = device  # perform ema on different device from model if set
        if device:
            self.ema.to(device=device)
        self.ema_has_module = hasattr(self.ema, 'module')
        if resume:
            self._load_checkpoint(resume)
        for p in self.ema.parameters():
            p.requires_grad_(False)

    def _load_checkpoint(self, checkpoint_path):
        checkpoint = torch.load(checkpoint_path, map_location='cpu')
        assert isinstance(checkpoint, dict)
        if 'state_dict_ema' in checkpoint:
            new_state_dict = OrderedDict()
            for k, v in checkpoint['state_dict_ema'].items():
                # ema model may have been wrapped by DataParallel, and need module prefix
                if self.ema_has_module:
                    name = 'module.' + k if not k.startswith('module') else k
                else:
                    name = k
                new_state_dict[name] = v
            self.ema.load_state_dict(new_state_dict)
            _logger.info("Loaded state_dict_ema")
        else:
            _logger.warning("Failed to find state_dict_ema, starting from loaded model weights")

    def update(self, model):
        # correct a mismatch in state dict keys
        needs_module = hasattr(model, 'module') and not self.ema_has_module
        with torch.no_grad():
            msd = model.state_dict()
            for k, ema_v in self.ema.state_dict().items():
                if needs_module:
                    k = 'module.' + k
                model_v = msd[k].detach()
                if self.device:
                    model_v = model_v.to(device=self.device)
                ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:
     model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device='cpu',
            resume=resume)

# 训练过程中,更新完参数后,同步update shadow weights
def train():
    optimizer.step()
    if model_ema is not None:
        model_ema.update(model)


# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

RevCol_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  ├─build.py
│  ├─modules.py
│  ├─revcol.py
│  ├─revcol_function.py
│  └─revcol_huge.py
├─mean_std.py
├─makedata.py
├─revcol_tiny_1k.pth
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
ema.py:EMA脚本
train.py:训练RevCol模型
revcol_tiny_1k.pth:预训练权重
models:来源官方代码,对面的代码做了一些适应性修改。这里使用revcol_tiny模型举例,将预训练权重放在项目的根目录,然后,使用torch.load加载预训练权重,然后使用model.load_state_dic加载权重,如果维度不匹配,则将strict设置为False。代码如下:

def revcol_tiny(save_memory, inter_supv=True, drop_path=0.1, num_classes=1000, kernel_size = 3):
    channels = [64, 128, 256, 512]
    layers = [2, 2, 4, 2]
    num_subnet = 4
    model=FullNet(channels, layers, num_subnet, num_classes=num_classes, drop_path = drop_path, save_memory=save_memory, inter_supv=inter_supv, kernel_size=kernel_size)
    checkpoint = torch.load('revcol_tiny_1k.pth', map_location="cpu")
    model.load_state_dict(checkpoint["model"],strict=False)

    return model

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms

def get_mean_and_std(train_data):
    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=1, shuffle=False, num_workers=0,
        pin_memory=True)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    for X, _ in train_loader:
        for d in range(3):
            mean[d] += X[:, d, :, :].mean()
            std[d] += X[:, d, :, :].std()
    mean.div_(len(train_data))
    std.div_(len(train_data))
    return list(mean.numpy()), list(std.numpy())

if __name__ == '__main__':
    train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())
    print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutil

image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
    print('true')
    #os.rmdir(file_dir)
    shutil.rmtree(file_dir)#删除再建立
    os.makedirs(file_dir)
else:
    os.makedirs(file_dir)

from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(train_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

for file in val_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(val_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1250066.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

常见树种(贵州省):018栎灌、油茶、火棘、铁仔、小檗、勾儿茶、马桑、车桑子、山苍子、楮

摘要:本专栏树种介绍图片来源于PPBC中国植物图像库(下附网址),本文整理仅做交流学习使用,同时便于查找,如有侵权请联系删除。 图片网址:PPBC中国植物图像库——最大的植物分类图片库 一、茅栗 …

萨科微举办工作交流和业务分享会

萨科微(www.slkoric.com)举办工作交流和业务分享会,狠抓人才培养团队的基本功建设。萨科微总经理宋仕强先生认为,当下市场经济形势复杂多变,给公司经营带来巨大压力,同时考验着企业自身的发展韧性。萨科微公…

认识Linux操作系统

什么是操作系统? 操作系统是一款软硬件资源管理的软件Linux是一款具体的操作系统的品类(Linux内核是用C语言写的)centos7是一款具体的Linux操作系统 为什么要有操作系统? Linux操作系统 Linux是一种自由和开放源代码的类UNIX操…

php获取当前域名方法

使用$_SERVER[HTTP_HOST]变量只获取到域名: $domain $_SERVER[HTTP_HOST]; echo $domain; 获取包含协议和域名的完整URL $protocol isset($_SERVER[HTTPS]) && $_SERVER[HTTPS] on ? https:// : http://; $domain $_SERVER[HTTP_HOST]; $current_url…

Ceph分布式存储系统的介绍及详细安装部署过程:详细实战版(保姆级)

Ceph简介 Ceph是一个统一的分布式存储系统,设计初衷是提供较好的性能、可靠性和可扩展性。 Ceph项目最早起源于Sage就读博士期间的工作(最早的成果于2004年发表),并随后贡献给开源社区。 在经过了数年的发展之后,目前…

基于Python的面向对象分类实例Ⅱ

接上一部分继续介绍~ 一、地类矢量转栅格 这一步是为了能让地类值和影像的对象落在同一区域,从而将影像中的分割对象同化为实际地物类别。 train_fn r".\train_data1.shp" train_ds ogr.Open(train_fn) lyr train_ds.GetLayer() driver gdal.GetDrive…

【GPT-3.5】通过python调用ChatGPT API与ChatGPT对话交流

文章目录 一、引言二、AIGC简介三、OpenAI介绍四、GPT-3.5介绍五、获得OpenAI API Key六、调用ChatGPT API实现与ChatGPT对话七、参考链接 一、引言 ChatGPT 的火爆,成功带火了AIGC,让它进入大众的视野。 ChatGPT 和Whisper API 开发者现在可以通过API将…

【Mybatis-Plus篇】Mybatis-Plus基本使用

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

网络数据结构skb_buff原理

skb_buff基本原理 内核中sk_buff结构体在各层协议之间传输不是用拷贝sk_buff结构体,而是通过增加协议头和移动指针来操作的。如果是从L4传输到L2,则是通过往sk_buff结构体中增加该层协议头来操作;如果是从L4到L2,则是通过移动sk_…

一个正整数转为2进制和8进制,1的个数相同的第23个数是什么?

package cn.com;import java.lang.*;//默认加载public class C2 {//10进制转8进制static int HtoO(int n){int cnt 0;while(n!0){cntn%8;n/8;}return cnt;}//10进制转2进制static int HtoB(int n){int cnt 0;while(n!0){cntn%2;n/2;}return cnt;}public static void main(Str…

Linux常用命令——bind命令

在线Linux命令查询工具 bind 显示或设置键盘按键与其相关的功能 补充说明 bind命令用于显示和设置命令行的键盘序列绑定功能。通过这一命令,可以提高命令行中操作效率。您可以利用bind命令了解有哪些按键组合与其功能,也可以自行指定要用哪些按键组合…

NX二次开发UF_CURVE_ask_curve_fit_data 函数介绍

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan UF_CURVE_ask_curve_fit_data Defined in: uf_curve.h int UF_CURVE_ask_curve_fit_data(tag_t curve_feature, UF_CURVE_curve_fit_data * curve_fit_data ) overview 概述 Ask c…

windows c++ open3D release版本下载与使用

文章目录 open3d库下载路径下载库的使用 Open3D的下载与成功调用,咱们不使用vs来编译。 我开始时候吧,想做个vs编译,后来就是在vs中反复进坑。编译来来去去都是报错。 咱们使用新方法,仅仅修改一两句代码,简单cmd编译即…

记录华为云服务器(Linux 可视化 宝塔面板)-- 安全组篇

文章目录 前言安全组说明安全组的特性安全组的应用场景 进入安全组添加基本规则添加自定义规则如有启发,可点赞收藏哟~ 前言 和windows防火墙类似,安全组是一种虚拟防火墙,具备状态检测和数据包过滤功能,可以对进出云服务器的流量…

laravel8安装多应用多模块(笔记三)

先安装laravel8 Laravel 安装(笔记一)-CSDN博客 一、进入项目根目录安装 laravel-modules composer require nwidart/laravel-modules 二、 大于laravel5需配置provider,自动生成配置文件 php artisan vendor:publish --provider"Nwid…

RevCol实战:使用RevCol实现图像分类任务(二)

文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上…

NX二次开发UF_CURVE_add_faces_ocf_data 函数介绍

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan UF_CURVE_add_faces_ocf_data Defined in: uf_curve.h int UF_CURVE_add_faces_ocf_data(tag_t face_tag, UF_CURVE_ocf_data_p_t uf_offset_data ) overview 概述 Add a face col…

系列九、声明式事务(xml方式)

一、概述 声明式事务(declarative transaction management)是Spring提供的对程序事务管理的一种方式,Spring的声明式事务顾名思义就是采用声明的方式来处理事务。这里所说的声明,是指在配置文件中声明,用在Spring配置文件中声明式的处理事务来…

旋转框检测项目相关python库知识总结(mmrotate、ppyolo_r、yolov5_obb)

旋转框常用于检测带有角度信息的矩形框,即矩形框的宽和高不再与图像坐标轴平行。相较于水平矩形框,旋转矩形框一般包括更少的背景信息。旋转框检测常用于遥感等场景中,本博文简单的介绍了可应用于旋转框数据训练的开源库,数据结构…

Qt 软件开发框架(主要部分)

目录 1、 一个软件基本要素 (1)UI模块 (2)网络模块 (3)业务逻辑模块 (4)中间层 (5)独立模块(守护进程、更新模块、日志收集模块…&#xff…