文章目录
- 摘要
- 安装包
- 安装timm
- 数据增强Cutout和Mixup
- EMA
- 项目结构
- 计算mean和std
- 生成数据集
摘要
可逆柱状结构(RevCol)是一种网络结构,它受到GLOM(Global Columnar Memory)的启发。RevCol由N个子网络(或称为列)组成,每个子网络的结构和功能都是相同的。这种结构可以有效地解决信息崩溃的问题,通过在前面的列中添加额外的监督,以保持特征和输入图像之间的互信息。此外,RevCol可以逐渐解耦语义和低级信息,从而提取和利用任务相关信息来进一步提高性能。在实现上,对于中间监督,采用了加权求和的方式将两个损失合并,对于所有变体的RevCol,通过实验确定将监督头添加到特定的列中。
可逆柱状结构在图像处理中的优势主要体现在以下几个方面:
结构灵活性:可逆柱状结构具有灵活的结构,可以适应各种尺寸和形状的任务,而不会像其他网络结构一样受到固定形状的限制。
信息保留:可逆柱状结构可以更好地保留图像的信息,包括高层次的语义信息和低层次的细节信息。这使得网络可以更好地适应各种复杂的任务,比如语义分割、物体检测等。
计算效率:由于可逆柱状结构的独特性,可以在计算过程中更有效地利用硬件资源,从而提高计算效率。此外,这种结构也有助于减少计算量,从而使得训练和推断过程更快。
泛化能力:可逆柱状结构还可以提高网络的泛化能力。这种结构使得网络可以更好地捕捉到图像的本质特征,从而在面对新的任务时能够更好地适应。
参数优化:可逆柱状结构有助于优化网络的参数。由于这种结构的特性,使得网络在训练过程中可以更快地收敛,从而节省训练时间,并且可以得到更优的网络性能。
多级可逆单元在图像分类、目标检测、图像文本标记、语义分割等任务中表现出了优秀的性能。
在图像分类任务中,多级可逆单元能够学习到更丰富的特征表示,从而提高了分类的准确性。通过可逆连接的设计,该单元能够同时捕获高层次和低层次的特征信息,从而在分类时考虑更多的因素。此外,多级可逆单元还可以通过共享参数的方式减少模型的复杂度,提高模型的泛化能力。
在目标检测任务中,多级可逆单元可以结合目标的位置和形状信息,从而更准确地检测出目标物体。由于该单元的可逆性,它可以适应不同的输入尺寸和形状,从而提高了目标检测的鲁棒性。此外,多级可逆单元还可以通过与卷积神经网络(CNN)相结合的方式,进一步提高了目标检测的性能。
在图像文本标记任务中,多级可逆单元可以结合图像和文本信息,从而更准确地识别和提取图像中的文本信息。该单元的可逆性使得它可以适应不同的文本样式和字体变化,从而提高了文本提取的准确性。此外,多级可逆单元还可以通过端到端训练的方式,进一步优化了图像文本标记的性能。
在语义分割任务中,多级可逆单元可以结合图像的全局和局部信息,从而更准确地分割出图像中的不同语义区域。该单元的可逆性使得它可以适应不同的图像内容和场景变化,从而提高了语义分割的准确性。此外,多级可逆单元还可以通过与CNN或其他深度学习模型相结合的方式,进一步提高了语义分割的性能。
这篇文章使用RevCol完成植物分类任务,模型采用revcol_tiny向大家展示如何使用RevCol。revcol_tiny在这个数据集上实现了96+%的ACC,如下图:
通过这篇文章能让你学到:
- 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
- 如何实现RevCol模型实现训练?
- 如何使用pytorch自带混合精度?
- 如何使用梯度裁剪防止梯度爆炸?
- 如何使用DP多显卡训练?
- 如何绘制loss和acc曲线?
- 如何生成val的测评报告?
- 如何编写测试脚本测试测试集?
- 如何使用余弦退火策略调整学习率?
- 如何使用AverageMeter类统计ACC和loss等自定义变量?
- 如何理解和统计ACC1和ACC5?
- 如何使用EMA?
如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。
安装包
安装timm
使用pip就行,命令:
pip install timm
mixup增强和EMA用到了timm
数据增强Cutout和Mixup
为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:
pip install torchtoolbox
Cutout实现,在transforms中。
from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
Cutout(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
需要导入包:from timm.data.mixup import Mixup,
定义Mixup,和SoftTargetCrossEntropy
mixup_fn = Mixup(
mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
prob=0.1, switch_prob=0.5, mode='batch',
label_smoothing=0.1, num_classes=12)
criterion_train = SoftTargetCrossEntropy()
Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:
mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。
cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。
cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。
如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0
prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。
switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。
mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。
correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正
label_smoothing (float):将标签平滑应用于混合目标张量。
num_classes (int): 目标的类数。
EMA
EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:
import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn
_logger = logging.getLogger(__name__)
class ModelEma:
def __init__(self, model, decay=0.9999, device='', resume=''):
# make a copy of the model for accumulating moving average of weights
self.ema = deepcopy(model)
self.ema.eval()
self.decay = decay
self.device = device # perform ema on different device from model if set
if device:
self.ema.to(device=device)
self.ema_has_module = hasattr(self.ema, 'module')
if resume:
self._load_checkpoint(resume)
for p in self.ema.parameters():
p.requires_grad_(False)
def _load_checkpoint(self, checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
assert isinstance(checkpoint, dict)
if 'state_dict_ema' in checkpoint:
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict_ema'].items():
# ema model may have been wrapped by DataParallel, and need module prefix
if self.ema_has_module:
name = 'module.' + k if not k.startswith('module') else k
else:
name = k
new_state_dict[name] = v
self.ema.load_state_dict(new_state_dict)
_logger.info("Loaded state_dict_ema")
else:
_logger.warning("Failed to find state_dict_ema, starting from loaded model weights")
def update(self, model):
# correct a mismatch in state dict keys
needs_module = hasattr(model, 'module') and not self.ema_has_module
with torch.no_grad():
msd = model.state_dict()
for k, ema_v in self.ema.state_dict().items():
if needs_module:
k = 'module.' + k
model_v = msd[k].detach()
if self.device:
model_v = model_v.to(device=self.device)
ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)
加入到模型中。
#初始化
if use_ema:
model_ema = ModelEma(
model_ft,
decay=model_ema_decay,
device='cpu',
resume=resume)
# 训练过程中,更新完参数后,同步update shadow weights
def train():
optimizer.step()
if model_ema is not None:
model_ema.update(model)
# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)
针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!
项目结构
RevCol_Demo
├─data1
│ ├─Black-grass
│ ├─Charlock
│ ├─Cleavers
│ ├─Common Chickweed
│ ├─Common wheat
│ ├─Fat Hen
│ ├─Loose Silky-bent
│ ├─Maize
│ ├─Scentless Mayweed
│ ├─Shepherds Purse
│ ├─Small-flowered Cranesbill
│ └─Sugar beet
├─models
│ ├─build.py
│ ├─modules.py
│ ├─revcol.py
│ ├─revcol_function.py
│ └─revcol_huge.py
├─mean_std.py
├─makedata.py
├─revcol_tiny_1k.pth
├─train.py
└─test.py
mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
ema.py:EMA脚本
train.py:训练RevCol模型
revcol_tiny_1k.pth:预训练权重
models:来源官方代码,对面的代码做了一些适应性修改。这里使用revcol_tiny模型举例,将预训练权重放在项目的根目录,然后,使用torch.load加载预训练权重,然后使用model.load_state_dic加载权重,如果维度不匹配,则将strict设置为False。代码如下:
def revcol_tiny(save_memory, inter_supv=True, drop_path=0.1, num_classes=1000, kernel_size = 3):
channels = [64, 128, 256, 512]
layers = [2, 2, 4, 2]
num_subnet = 4
model=FullNet(channels, layers, num_subnet, num_classes=num_classes, drop_path = drop_path, save_memory=save_memory, inter_supv=inter_supv, kernel_size=kernel_size)
checkpoint = torch.load('revcol_tiny_1k.pth', map_location="cpu")
model.load_state_dict(checkpoint["model"],strict=False)
return model
计算mean和std
为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:
from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms
def get_mean_and_std(train_data):
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=1, shuffle=False, num_workers=0,
pin_memory=True)
mean = torch.zeros(3)
std = torch.zeros(3)
for X, _ in train_loader:
for d in range(3):
mean[d] += X[:, d, :, :].mean()
std[d] += X[:, d, :, :].std()
mean.div_(len(train_data))
std.div_(len(train_data))
return list(mean.numpy()), list(std.numpy())
if __name__ == '__main__':
train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())
print(get_mean_and_std(train_dataset))
数据集结构:
运行结果:
([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])
把这个结果记录下来,后面要用!
生成数据集
我们整理还的图像分类的数据集结构是这样的
data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet
pytorch和keras默认加载方式是ImageNet数据集格式,格式是
├─data
│ ├─val
│ │ ├─Black-grass
│ │ ├─Charlock
│ │ ├─Cleavers
│ │ ├─Common Chickweed
│ │ ├─Common wheat
│ │ ├─Fat Hen
│ │ ├─Loose Silky-bent
│ │ ├─Maize
│ │ ├─Scentless Mayweed
│ │ ├─Shepherds Purse
│ │ ├─Small-flowered Cranesbill
│ │ └─Sugar beet
│ └─train
│ ├─Black-grass
│ ├─Charlock
│ ├─Cleavers
│ ├─Common Chickweed
│ ├─Common wheat
│ ├─Fat Hen
│ ├─Loose Silky-bent
│ ├─Maize
│ ├─Scentless Mayweed
│ ├─Shepherds Purse
│ ├─Small-flowered Cranesbill
│ └─Sugar beet
新增格式转化脚本makedata.py,插入代码:
import glob
import os
import shutil
image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
print('true')
#os.rmdir(file_dir)
shutil.rmtree(file_dir)#删除再建立
os.makedirs(file_dir)
else:
os.makedirs(file_dir)
from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
file_class=file.replace("\\","/").split('/')[-2]
file_name=file.replace("\\","/").split('/')[-1]
file_class=os.path.join(train_root,file_class)
if not os.path.isdir(file_class):
os.makedirs(file_class)
shutil.copy(file, file_class + '/' + file_name)
for file in val_files:
file_class=file.replace("\\","/").split('/')[-2]
file_name=file.replace("\\","/").split('/')[-1]
file_class=os.path.join(val_root,file_class)
if not os.path.isdir(file_class):
os.makedirs(file_class)
shutil.copy(file, file_class + '/' + file_name)
完成上面的内容就可以开启训练和测试了。