OpenHarmony子系统开发 -- 构建系统编码规范与最佳实践

news2025/3/11 15:58:53

OpenHarmony子系统开发 -- 构建系统编码规范与最佳实践

概述

gn是generate ninja的缩写,它是一个元编译系统(meta-build system),是ninja的前端,gn和ninja结合起来,完成OpenHarmony操作系统的编译任务。

gn简介

  • 目前采用gn的大型软件系统有:Chromium,Fuchsia和OpenHarmony。
  • gn语法自设计之初就自带局限性,比如不能求list的长度,不支持通配符等。这些局限性源于其 有所为有所不为 的设计哲学。 所以在使用gn的过程中,如果发现某件事情用gn实现起来很复杂,请先停下来思考这件事情是否真的需要做。
  • 关于gn的更多详情见gn官方文档。

本文的目标读者和覆盖范围

目标读者为OpenHarmony的开发者。本文主要讨论gn的编码风格和使用gn过程中容易出现的问题,不讨论gn的语法,如需了解gn基础知识,见gn reference文档。

总体原则

在保证功能可用的前提下,脚本需要满足易于阅读,便于维护,良好的扩展性和性能等要求。

代码风格

命名

总体上遵循Linux kernel的命名风格,即小写字母+下划线的命名风格。

局部变量

我们这里对局部变量的定义为:在某作用域内,且不向下传递的变量。

为了更好的区别于全局变量,局部变量统一采用下划线开头

# 例1
action("some_action") {
  ...
  # _output是个局部变量,所以使用下划线开头
  _output = "${target_out_dir}/${target_name}.out"
  outputs = [ _output ]
  args = [
    ...
      "--output",
      rebase_path(_output, root_build_dir),
      ...
  ]
  ...
}
全局变量

全局变量使用小写字母开头。

如果变量值可以被gn args修改,则需要使用declare_args来声明,否则不要使用declare_args。

# 例2
declare_args() {
  # 可以通过gn args来修改some_feature的值
  some_feature = false
}
目标命名

目标命名采用小写字母+下划线的命名方式。

模板中的子目标命名方式采用"${target_name}+双下划线+后缀"的命名方式。这样做有两点好处:

  • 加入"${target_name}"可以防止子目标重名。

  • 加入双下划线可以很方便地区分出子目标属于哪一个模块,方便在出现问题时快速定位。

    # 例3
    template("ohos_shared_library") {
      # "{target_name}"(主目标名)+"__"(双下划线)+"notice"(后缀)
      _notice_target = "${target_name}__notice"
      collect_notice(_notice_target) {
        ...
      }
      shared_library(target_name) {
        ...
      }
    }
    
自定义模板的命名

推荐采用动宾短语的形式来命名。

# 例4
# Good
template("compile_resources") {
  ...
}

格式化

gn脚本在提交之前需要执行格式化。格式化可以保证代码对齐,换行等风格的统一。使用gn自带的format工具即可。命令如下:

$ gn format path-to-BUILD.gn

gn format会按照字母序对import文件做排序,如果想保证import的顺序,可以添加空注释行。

假设原来的import顺序为:

# 例5
import("//b.gni")
import("//a.gni")

经过format之后变为:

import("//a.gni")
import("//b.gni")

如果想保证原有的import顺序,可以添加空注释行。

import("//b.gni")
# Comment to keep import order
import("//a.gni")

编码实践

实践原则

编译脚本实质上完成了两件工作:

  1. 描述模块之间依赖关系(deps)

    实践过程中,最常出现的问题是依赖关系缺失

  2. 描述模块编译的规则(rule)

    实践过程中,容易出现的问题是输入和输出不明确

依赖缺失会导致两个问题:

  • 概率性编译错误

    # 例6
    # 依赖关系缺失,导致概率性编译出错
    shared_library("a") {
      ...
    }
    shared_library("b") {
      ...
      ldflags = [ "-la" ]
      deps = []
      ...
    }
    group("images") {
      deps = [ ":b" ]
    }
    

    上面的例子中,libb.so在链接的时候会链接liba.so,实质上构成b依赖a,但是b的依赖列表(deps)却没有声明对a的依赖。由于编译是并发执行的,如果libb.so在链接的时候liba.so还没有编译出来,就会出现编译错误。

    由于liba.so也有可能在libb.so之前编译出来,所以依赖缺失导致的编译错误是概率性的。

  • 依赖关系缺失导致模块没有参与编译

    还是上面的例子,如果我们指定ninja编译目标为images,由于images仅仅依赖b,所以a不会参与编译。由于b实质上依赖a, 这时b在链接时会出现必现错误。

有一种不太常见的问题是过多的依赖过多的依赖会降低并发,导致编译变慢。见下面的例子:

_compile_js_target不需要依赖 _compile_resource_target,增加这层依赖,会导致 _compile_js_target在 _compile_resource_target编译完成之后才能开始编译。

# 例7
# 过多的依赖导致编译变慢
template("too_much_deps") {
  ...
  _gen_resource_target = "${target_name}__res"
  action(_gen_resource_target) {
    ...
  }

  _compile_resource_target = "${target_name}__compile_res"
  action(_compile_resource_target) {
    deps = [":$_gen_resource_target"]
    ...
  }

  _compile_js_target = "${target_name}__js"
  action(_compile_js_target) {
    # 这个deps不需要
    deps = [":$_compile_resource_target"]
  }
}

输入不明确会导致:

  • 代码修改了,但增量编译时却没有参与编译。
  • 当使用缓存时,代码发生变化,但是缓存仍然命中。

下面的例子中,foo.py引用了bar.py中的函数。bar.py实质上是foo.py的输入,需要将bar.py添加到implict_input_action的input或者depfile中去。否则,修改bar.py,模块implict_input_action将不会重新编译。

# 例8
action("implict_input_action") {
  script = "//path-to-foo.py"
  ...
}
#!/usr/bin/env
# Contents of foo.py
import bar
...
bar.some_function()
...

输出不明确会导致:

  • 隐式的输出
  • 当使用缓存时,隐式输出无法从缓存中获得

下面的例子中,foo.py会生成两个文件,a.out和b.out,但是implict_output_action的输出只声明了a.out。这种情况下,b.out实质上就是一个隐式输出。缓存中只会存储a.out,不会存储b.out,当缓存命中时,b.out就编译不出来了。

# 例9
action("implict_output_action") {
  outputs = ["${target_out_dir}/a.out"]
  script = "//path-to-foo.py"
  ...
}
#!/usr/bin/env
# Contents of foo.py
...
write_file("b.out")
write_file("a.out")
...

模板

不要使用gn的原生模板,使用编译子系统提供的模板

所谓gn原生模板,是指source_set,shared_library, static_library, action, executable,group这六个模板。

不推荐使用原生模板的原因有二:

  • 原生模板是最小功能模板,无法提供external_deps的解析,notice收集,安装信息生成等的额外功能,这些额外功能最好是随着模块编译时同时生成,所以必须对原生模板做额外的扩展才能满足实际的需求。

  • 当输入文件依赖的文件发生变化时,gn原生的action模板不能自动感知到这种变化,无法重新编译。见例8

    原生模板和编译子系统提供的模板之间的对应关系:

编译子系统提供的模板原生模板
ohos_shared_libraryshared_library
ohos_source_setsource_set
ohos_executableexecutable
ohos_static_librarystatic_library
action_with_pydepsaction
ohos_groupgroup

使用python脚本

action中的script推荐使用python脚本,不推荐使用shell脚本。相比于shell脚本,python脚本:

  • python语法友好,不会因为少写一个空格就导致奇怪的错误。
  • python脚本有很强的可读性。
  • 可维护性强,可调试。
  • OpenHarmony对python任务做了缓存,可以加快编译速度。

rebase_path

  • 仅在向action的参数列表中(args)调用rebase_path。

    # 例10
    template("foo") {
      action(target_name) {
        ...
        args = [
          # 仅在args中调用rebase_path
          "--bar=" + rebase_path(invoker.bar, root_build_dir),
          ...
        ]
        ...
      }
    }
    
    foo("good") {
      bar = something
      ...
    }
    
  • 同一变量做两次rebase_path会出现意想不到的结果。

    # 例11
    template("foo") {
      action(target_name) {
        ...
        args = [
          # bar被执行了两次rebase_path, 传递的bar的值已经不对了
          "--bar=" + rebase_path(invoker.bar, root_build_dir),
          ...
        ]
        ...
      }
    }
    
    foo("bad") {
      # 不要在这里调用rebase_path
      bar = rebase_path(some_value,root_build_dir)
      ...
    }
    

模块间数据分享

模块间数据分享是很常见的事情,比如A模块想要知道B模块的输出和deps。

  • 同一BUILD.gn之间数据分享

    同一BUILD.gn之间数据可以通过定义全局变量的方式来共享。

    下面的例子中,模块a的输出是模块b的输入,可以通过定义全局变量的方式来共享给b

    # 例12
    _output_a = get_label_info(":a", "out_dir") + "/a.out"
    action("a") {
      outputs = _output_a
      ...
    }
    action("b") {
      inputs = [_output_a]
      ...
    }
    
  • 不同BUILD.gn之间数据分享

    不同BUILD.gn之间传递数据,最好的办法是将需要共享的数据保存成文件,然后不同模块之间通过文件来传递和共享数据。这种场景比较复杂,读者可以参照OpenHarmony的hap编译过程的write_meta_data。

forward_variable_from

  • 自定义模板需要首先将testonly传递(forward)进来。因为该模板的target有可能被testonly的目标依赖。

    # 例13
    # 自定义模板首先要传递testonly
    template("foo") {
      forward_variable_from(invoker, ["testonly"])
      ...
    }
    
  • 不推荐使用*来forward变量,需要的变量应该显式地,一个一个地被forward进来。

    # 例14
    # Bad,使用*forward变量
    template("foo") {
      forward_variable_from(invoker, "*")
      ...
    }
    
    # Good, 显式地,一个一个地forward变量
    template("bar") {
      # 
      forward_variable_from(invoker, [
                                         "testonly",
                                         "deps",
                                         ...
                                       ])
      ...
    }
    

target_name

target_name会随着作用域变化而变化,使用时需要注意。

# 例15
# target_name会随着作用域变化而变化
template("foo") {
  # 此时打印出来的target_name为"${target_name}"
  print(target_name)
  _code_gen_target = "${target_name}__gen"
  code_gen(_code_gen_target) {
    # 此时打印出来的target_name为"${target_name}__gen"
    print(target_name)
    ...
  }
  _compile_gen_target = "${target_name}__compile"
  compile(_compile_gen_target) {
    # 此时打印出来的target_name为"${target_name}__compile"
    print(target_name)
    ...
  }
  ...
}

public_configs

如果模块需要向外export头文件,请使用public_configs。

# 例16
# b依赖a,会同时继承a的headers
config("headers") {
  include_dirs = ["//path-to-headers"]
  ...
}
shared_library("a") {
  public_configs = [":headers"]
  ...
}
executable("b") {
  deps = [":a"]
  ...
}

template

自定义模板中必须有一个子目标的名字是target_name。该子目标会作为template的主目标。其他子目标都应该被主目标依赖,否则子目标不会被编译。

# 例17
# 自定义模板中必须有一个子目标的名字是target_name
template("foo") {
  _code_gen_target = "${target_name}__gen"
  code_gen(_code_gen_target) {
    ...
  }
  _compile_gen_target = "${target_name}__compile"
  compile(_compile_gen_target) {
    # 此时打印出来的target_name为"${target_name}__compile"
    print(target_name)
    ...
  }
  ...
  group(target_name) {
    deps = [
    # 由于_compile_gen_target依赖了_code_gen_target,所以主目标只需要依赖_compile_gen_target即可。
      ":$_compile_gen_target"
    ]
  }
}

set_source_assignment_filter

set_source_assignment_filter除了可以过滤sources,还可以用来过滤其他变量。过滤完成后记得将过滤器和sources置空。

# 例18
# 使用set_source_assignment_filter过滤依赖, 挑选label符合*:*_res的添加到依赖列表中
_deps = []
foreach(_possible_dep, invoker.deps) {
  set_source_assignment_filter(["*:*_res"])
  _label = get_label_info(_possible_dep, "label_no_toolchain")
  sources = []
  sources = [ _label ]
  if (sources = []) {
    _deps += _sources
  }
}
sources = []
set_source_assignment_filter([])

最新版本上set_source_assignment_filter被filter_include和filter_exclude取代。

部件内依赖采用deps,跨部件依赖采用external_deps

  • 部件在OpenHarmony上指能提供某个能力的一组模块。

  • 在模块定义的时候可以声明part_name,用来表明当前模块属于哪个部件。

  • 每个部件会声明其inner_kits,供其他部件调用。部件inner_kits的声明见源码中的bundle.json。

  • 部件间依赖只能依赖inner_kits,不能依赖非inner_kits的模块。

  • 如果a模块和b模块的part_name相同,那么a、b模块属于同一个部件,a,b模块之间的依赖关系可以用deps来声明。

  • 如果a、b模块的part_name不同,那么a、b模块不属于同一个部件,a、b模块之间的依赖关系需要通过external_deps来声明,依赖方式为"部件名:模块名"的方式。见例19。

    # 例19
    shared_library("a") {
      ...
      external_deps = ["part_name_of_b:b"]
      ...
    }
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2313291.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32之BKP

VBAT备用电源。接的时候和主电源共地,正极接在一起,中间连接一个100nf的电容。BKP是RAM存储器。 四组VDD都要接到3.3V的电源上,要使用备用电池,就把电池正极接到VBAT,负极跟主电源共地。 TEMPER引脚先加一个默认的上拉…

c++的基础排序算法

一、快速排序 1. 选择基准值(Pivot) 作用 :从数组中选择一个元素作为基准(Pivot),用于划分数组。常见选择方式 : 固定选择最后一个元素(如示例代码)。随机选择&#xf…

基于Spring3的抽奖系统

注:项目git仓库地址:demo.lottery 小五Z/Spring items - 码云 - 开源中国 目录 注:项目git仓库地址:demo.lottery 小五Z/Spring items - 码云 - 开源中国 项目具体代码可参考仓库源码,本文只讲解重点代码逻辑 一…

基于qiime2的16S数据分析全流程:从导入数据到下游分析一条龙

目录 创建metadata 把数据导入qiime2 去除引物序列 双端合并 (dada2不需要) 质控 (dada2不需要) 使用deblur获得特征序列 使用dada2生成代表序列与特征表 物种鉴定 可视化物种鉴定结果 构建进化树(ITS一般不构建进化树…

【Linux系统编程】基本IO函数

目录 1、open 函数2、create 函数3、write 函数4、read 函数5、lseek 函数6、access 函数7、unlink 函数8、remove 函数9、fcntl 函数写锁互斥锁示例读锁共享锁示例 1、open 函数 头文件 #include<sys/types.h> #include<sys/stat.h>#include<fcntl.h>…

Deepseek应用技巧-chatbox搭建前端问答

目标&#xff1a;书接上回&#xff0c;由于本地私有化部署了deepseek的大模型&#xff0c;那怎么能够投入生产呢&#xff0c;那就必须有一个前端的应用界面&#xff0c;好在已经有很多的前人已经帮我们把前段应用给搭建好了&#xff0c;我们使用就可以啦&#xff0c;今天我们就…

OpenAI API模型ChatGPT各模型功能对比,o1、o1Pro、GPT-4o、GPT-4.5调用次数限制附ChatGPT订阅教程

本文包含OpenAI API模型对比页面以及ChatGPT各模型功能对比表 - 截至2025最新整理数据&#xff1a;包含模型分类及描述&#xff1b;调用次数限制&#xff1b; 包含模型的类型有&#xff1a; Chat 模型&#xff08;如 GPT-4o、GPT-4.5、GPT-4&#xff09;专注于对话&#xff0c…

Fast DDS Security--秘钥交换

Fast DDS Security模块中默认使用Diffie-Hellman算法进行秘钥交换。Diffie-Hellman 算法&#xff08;简称 DH 算法&#xff09;是一个非常重要的加密协议&#xff0c;用于在不安全的通信通道中安全地交换密钥。该算法通过利用数学中的离散对数问题来生成共享密钥&#xff0c;使…

从0开始的操作系统手搓教程33:挂载我们的文件系统

目录 代码实现 添加到初始化上 上电看现象 挂载分区可能是一些朋友不理解的——实际上挂载就是将我们的文件系统封装好了的设备&#xff08;硬盘啊&#xff0c;SD卡啊&#xff0c;U盘啊等等&#xff09;&#xff0c;挂到我们的默认分区路径下。这样我们就能访问到了&#xff…

基于muduo+mysql+jsoncpp的简易HTTPWebServer

一、项目介绍 本项目基于C语言、陈硕老师的muduo网络库、mysql数据库以及jsoncpp&#xff0c;服务器监听两个端口&#xff0c;一个端口用于处理http请求&#xff0c;另一个端口用于处理发送来的json数据。 此项目在实现时&#xff0c;识别出车牌后打包为json数据发送给后端服务…

【Go学习实战】03-2-博客查询及登录

【Go学习实战】03-2-博客查询及登录 读取数据库数据初始化数据库首页真实数据分类查询分类查询测试 文章查询文章查询测试 分类文章列表测试 登录功能登录页面登录接口获取json参数登录失败测试 md5加密jwt工具 登录成功测试 文章详情测试 读取数据库数据 因为我们之前的数据都…

《Python实战进阶》No20: 网络爬虫开发:Scrapy框架详解

No20: 网络爬虫开发&#xff1a;Scrapy框架详解 摘要 本文深入解析Scrapy核心架构&#xff0c;通过中间件链式处理、布隆过滤器增量爬取、Splash动态渲染、分布式指纹策略四大核心技术&#xff0c;结合政府数据爬取与动态API逆向工程实战案例&#xff0c;构建企业级爬虫系统。…

Linux:多线程(单例模式,其他常见的锁,读者写者问题)

目录 单例模式 什么是设计模式 单例模式介绍 饿汉实现方式和懒汉实现方式 其他常见的各种锁 自旋锁 读者写者问题 逻辑过程 接口介绍 单例模式 什么是设计模式 设计模式就是一些大佬在编写代码的过程中&#xff0c;针对一些经典常见场景&#xff0c;给定对应解决方案&…

【氮化镓】高输入功率应力诱导的GaN 在下的退化LNA退化

2019年,中国工程物理研究院电子工程研究所的Tong等人基于实验与第一性原理计算方法,研究了Ka波段GaN低噪声放大器(LNA)在高输入功率应力下的退化机制。实验结果表明,在27 GHz下施加1 W连续波(CW)输入功率应力后,LNA的增益下降约1 dB,噪声系数(NF)增加约0.7 dB。进一…

Javaweb后端文件上传@value注解

文件本地存储磁盘 阿里云oss准备工作 阿里云oss入门程序 要重启一下idea&#xff0c;上面有cmd 阿里云oss案例集成 优化 用spring中的value注解

git规范提交之commitizen conventional-changelog-cli 安装

一、引言 使用规范的提交信息可以让项目更加模块化、易于维护和理解&#xff0c;同时也便于自动化工具&#xff08;如发布工具或 Changelog 生成器&#xff09;解析和处理提交记录。 通过编写符合规范的提交消息&#xff0c;可以让团队和协作者更好地理解项目的变更历史和版本…

Java/Kotlin逆向基础与Smali语法精解

1. 法律警示与道德边界 1.1 司法判例深度剖析 案例一&#xff1a;2021年某游戏外挂团伙刑事案 犯罪手法&#xff1a;逆向《王者荣耀》通信协议&#xff0c;修改战斗数据包 技术细节&#xff1a;Hook libil2cpp.so的SendPacket函数 量刑依据&#xff1a;非法经营罪&#xff…

非软件开发项目快速上手:14款管理软件精选

文章介绍了以下14款项目管理系统&#xff1a;1.Worktile&#xff1b;2.Teambition&#xff1b;3.Microsoft Project&#xff1b;4.Forbes&#xff1b;5.WorkOtter&#xff1b;6.Trello&#xff1b;7.Smartsheet&#xff1b;8.Taiga&#xff1b;9.ClickUp&#xff1b;10.Monday.…

夸父工具箱(安卓版) 手机超强工具箱

如今&#xff0c;人们的互联网活动日益频繁&#xff0c;导致手机内存即便频繁清理&#xff0c;也会莫名其妙地迅速填满&#xff0c;许多无用的垃圾信息悄然占据空间。那么&#xff0c;如何有效应对这一难题呢&#xff1f;答案就是今天新推出的这款工具软件&#xff0c;它能从根…

混元图生视频-腾讯混元开源的图生视频模型

混元图生视频是什么 混元图生视频是腾讯混元推出的开源图生视频模型&#xff0c;用户可以通过上传一张图片进行简短描述&#xff0c;让图片动起来生成5秒的短视频。模型支持对口型、动作驱动和背景音效自动生成等功能。模型适用于写实、动漫和CGI等多种角色和场景&#xff0c;…