YOLOv8改进 | CARAFE既减少参数又提高精度的上采样方法

news2024/12/27 13:19:40

论文地址:官方论文地址点击即可跳转

代码地址:官方代码地址点击即可跳转

一、本文介绍

本文给大家带来的CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。其主要旨在改进传统的上采样方法就是我们的Upsample)的性能。CARAFE的核心思想是:使用输入特征本身的内容来指导上采样过程,从而实现更精准和高效的特征重建。CARAFE是一种即插即用的上采样机制其本身并没有任何的使用限制,特别是在需要精细上采样的场景中,如图像超分辨率、语义分割等。这种方法改善了上采样过程中的细节保留和重建质量,使网络能够生成更清晰、更准确的输出。所以在YOLOv8的改进中其也可以做到一个减少计算量提高精度的改进方法。

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

实验效果图如下所示-> 

本次实验我只用了一百张图片检测的是安全帽训练了一百个epoch,该结果只能展示出该机制有效,但是并不能产生决定性结果,因为具体的效果还要看你的数据集和实验环境所影响。

目录

一、本文介绍

​编辑

二、CARAFE的机制原理 

2.1 CARAFE的基本原理

2.2 图解CARAFE原理 

2.3 CARAFE的效果图 

三、CARAFE的复现源码

四、添加CARAFE到模型中

4.1 CARAFE的添加教程

4.2 CARAFE的yaml文件和训练截图

4.2.1 CARAFE的yaml文件

4.2.2 CARAFE的训练过程截图 

五、全文总结 


二、CARAFE的机制原理 

2.1 CARAFE的基本原理

CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。这种方法首次在论文《CARAFE: Content-Aware ReAssembly of FEatures》中提出,旨在改进传统的上采样方法(如双线性插值和转置卷积)的性能。

CARAFE通过在每个位置利用底层内容信息来预测重组核,并在预定义的附近区域内重组特征。由于内容信息的引入,CARAFE可以在不同位置使用自适应和优化的重组核,从而比主流的上采样操作符(如插值或反卷积)表现更好。

CARAFE包括两个步骤首先预测每个目标位置的重组核,然后用预测的核重组特征。给定一个尺寸为 H×W×C 的特征图和一个上采样比率 U,CARAFE将产生一个新的尺寸为 UH×UW×C 的特征图。其次CARAFE的核预测模块根据输入特征的内容生成位置特定的核,然后内容感知重组模块使用这些核来重组特征。

CARAFE可以无缝集成到需要上采样操作的现有框架中。在主流的密集预测任务中,CARAFE对高级和低级任务(如对象检测、实例分割、语义分割和图像修复)都有益处,且额外的参数微不足道。

2.2 图解CARAFE原理 

下图是CARAFE工作机制的示意图。左侧展示了来自Mask R-CNN的多层FPN(特征金字塔网络)特征(直至虚线左侧),右侧展示了集成了CARAFE的Mask R-CNN(直至虚线右侧)。对于采样的位置,该图显示了FPN自上而下路径中累积重组的区域。这样一个区域内的信息被重组到相应的重组中心。 

下图展示了CARAFE的整体框架。CARAFE由两个关键部分组成,即核预测模块和内容感知重组模块。在这个框架中,一个尺寸为 H×W×C 的特征图被上采样因子 U(=2) 倍。 

下图展示了集成了CARAFE的特征金字塔网络(FPN)架构。在这个架构中,CARAFE在FPN的自上而下路径中将特征图的尺寸上采样2倍。CARAFE通过无缝替换最近邻插值而整合到FPN中,从而优化了特征上采样的过程。

2.3 CARAFE的效果图 

下图比较了COCO 2017验证集上基线(上面)和CARAFE(下面)在实例分割结果方面的差异。 

总结:我个人觉得其实其效果提升比较一般甚至某些数据集上提点很微弱,但是它主要的作用是减少计算量是一个更加轻量化的上采样方法。 

三、CARAFE的复现源码

我们将在“ultralytics/nn/modules”目录下面创建一个文件将其复制进去,使用方法在后面会讲。

import torch
import torch.nn as nn
from ultralytics.nn.modules import Conv


class CARAFE(nn.Module):
    def __init__(self, c, k_enc=3, k_up=5, c_mid=64, scale=2):
        """ The unofficial implementation of the CARAFE module.
        The details are in "https://arxiv.org/abs/1905.02188".
        Args:
            c: The channel number of the input and the output.
            c_mid: The channel number after compression.
            scale: The expected upsample scale.
            k_up: The size of the reassembly kernel.
            k_enc: The kernel size of the encoder.
        Returns:
            X: The upsampled feature map.
        """
        super(CARAFE, self).__init__()
        self.scale = scale

        self.comp = Conv(c, c_mid)
        self.enc = Conv(c_mid, (scale * k_up) ** 2, k=k_enc, act=False)
        self.pix_shf = nn.PixelShuffle(scale)

        self.upsmp = nn.Upsample(scale_factor=scale, mode='nearest')
        self.unfold = nn.Unfold(kernel_size=k_up, dilation=scale,
                                padding=k_up // 2 * scale)

    def forward(self, X):
        b, c, h, w = X.size()
        h_, w_ = h * self.scale, w * self.scale

        W = self.comp(X)  # b * m * h * w
        W = self.enc(W)  # b * 100 * h * w
        W = self.pix_shf(W)  # b * 25 * h_ * w_
        W = torch.softmax(W, dim=1)  # b * 25 * h_ * w_

        X = self.upsmp(X)  # b * c * h_ * w_
        X = self.unfold(X)  # b * 25c * h_ * w_
        X = X.view(b, c, -1, h_, w_)  # b * 25 * c * h_ * w_

        X = torch.einsum('bkhw,bckhw->bchw', [W, X])  # b * c * h_ * w_
        return X

四、添加CARAFE到模型中

4.1 CARAFE的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

需要注意的是本文的task.py配置的代码如下(你现在不知道其是干什么用的可以看添加教程)-> 

        elif m is CARAFE:
            args = [ch[f], *args]

4.2 CARAFE的yaml文件和训练截图

4.2.1 CARAFE的yaml文件

4.2.2 CARAFE的训练过程截图 

下面是我添加了CARAFE的训练截图。

五、全文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1245518.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

手写数字可视化_Python数据分析与可视化

手写数字可视化 手写数字流形学习 手写数字 手写数字无论是在数据可视化还是深度学习都是一个比较实用的案例。 数据在sklearn中,包含近2000份8 x 8的手写数字缩略图。 首先需要先下载数据,然后使用plt.imshow()对一些图形进行可视化: 打开c…

Springmvc原理解析

1. DispatcherServlet springmvc的核心控制器,负责截获所有的请求,当截获请求后委托给HandlerMapping进行请求映射的解析工作,目的是找到哪一个Controller的方法可以处理该请求,找到后再交由给HandlerAdaptor去负责调用并返回Mod…

利用人工智能打破应试教育惯性促进学生思维活化与创新能力培养的研究

全文均为人工智能独立研究完成 应试教育导致学生迷信标准答案惯性导致思维僵化-移动机器人-CSDN博客 用AI魔法打败AI魔法-CSDN博客 课题名称建议:“利用人工智能打破应试教育惯性,促进学生思维活化与创新能力培养研究”。 这个课题名称明确指出了研究的…

ConcurrentHashMap的数据结构+以及各个版本之间的区别

ConcurrentHashMap 1.7与1.8的区别 1、锁结构不同 2、put的流程不同 3、size的计算方式不同(1.8使用的使用basecell[]计算,有点类似于LongAdder,1.7使用三级通缉判断是否一样,不一样通过分段式加锁再求和) 4、数据结构不同,1.6 Re…

[BJDCTF2020]The mystery of ip1

提示 ssti模板注入head头x-forwarded-for 每一次做题的最开始流程都大致因该是 信息收集找可以操控的地方 查看hint页面的源代码又发现它提示说 ####你知道为什么会知道你的ip吗 查看flag页面 从刚才给我的提示以及他这里显示的我的ip,大概找到了我可操作的可控点 …

Flutter 小技巧之 3.16 升级最坑 M3 默认适配技巧

如果要说 Flutter 3.16 升级里是最坑的是什么?那我肯定要说是 Material 3 default (M3)。 倒不是说 M3 bug 多,也不是 M3 在 3.16 上使用起来多麻烦,因为虽然从 3.16 开始,MaterialApp 里的 useMaterial3 …

海报设计必备:揭秘5款炙手可热的设计工具

1.即时设计:能实现在线协作的海报设计软件 即时设计作为 2020 年上线的国产设计工具,目前已经有了超百万的注册用户,获得了广大设计师的一致好评。与其他传统海报设计软件相比,即时设计具有这几个优点:一是所有功能都…

自定义字符-摄氏度汉字一

本文为博主 日月同辉,与我共生,csdn原创首发。希望看完后能对你有所帮助,不足之处请指正!一起交流学习,共同进步! > 发布人:日月同辉,与我共生_单片机-CSDN博客 > 欢迎你为独创博主日月同…

JDK11新特性

目录 一、JShell 二、Dynamic Class-File Constants类文件新添的一种结构 三、局部变量类型推断(var ”关键字”) 四、新加的一些实用API 1. 新的本机不可修改集合API 2. Stream 加强 3. String 加强 4. Optional 加强 5. 改进的文件API 五、移…

Django之Cookie与Session,CBV加装饰器

前言 会话跟踪技术 在一个会话的多个请求中共享数据,这就是会话跟踪技术。例如在一个会话中的请求如下:  请求银行主页; 请求登录(请求参数是用户名和密码);请求转账(请求参数与转账相关的数…

技术短视频账号矩阵seo系统--源头开发---saas工具

专注短视频账号矩阵系统源头开发---saas营销化工具,目前我们作为一家纯技术开发团队目前已经专注打磨开发这套系统企业版/线下版两个版本的saas营销拓客工具已经3年了,本套系统逻辑主要是从ai智能批量剪辑、账号矩阵全托管发布、私信触单收录、文案ai智能…

如何为您的企业选择合适的多因素认证?

在传统的网络安全架构中,重点在于防止非法入侵,例如防火墙、VPN 、堡垒机等安全设备的重心都在于防止用户违规访问企业资源,一旦合法用户的账号密码被入侵者拿到,就可以冒充合法用户访问企业资源,所有的安全设备形同虚…

通过Spring整合MyBatis实现持久层操作

文章目录 为什么要整合Spring和MyBatis?步骤一:添加依赖步骤二:配置数据源步骤三:配置MyBatis步骤四:创建Mapper接口和XML文件步骤五:使用Mapper接口拓展:事务管理 🎉通过Spring整合…

快手二面:敢不敢说说为啥POI会导致内存溢出?

△Hollis, 一个对Coding有着独特追求的人△ 这是Hollis的第 435 篇原创分享 作者 l Hollis 来源 l Hollis(ID:hollischuang) Apache POI,是一个非常流行的文档处理工具,通常大家会选择用它来处理Excel文件。但是在实际…

gitee推荐-PHP面试准备的资料

该内容为giee项目。PHP-Interview: 这个项目是自己准备PHP面试整理的资料。包括PHP、MySQL、Linux、计算机网络等资料。方便自己以后查阅,会不定期更新,欢迎提交pr,如果错误,请指出,谢谢 在线预览地址:Intr…

电机应用开发-直流有刷电机位置环控制实现

目录 直流有刷电机位置环控制实现 硬件设计 直流电机位置环控制-位置式PID实现 编程要点 配置基本定时器6产生定时中断来执行PID运算 配置定时器1输出PWM控制电机 配置定时器3读取编码器的计数值 编写位置式PID算法 主体功能 直流电机位置环控制-增量式PID实现 编程…

Python爬虫-获取汽车之家新车优惠价

前言 本文是该专栏的第10篇,后面会持续分享python爬虫案例干货,记得关注。 本文以汽车之家新车优惠价为例,获取各车型的优惠价,示例图如下: 地址:aHR0cHM6Ly9idXkuYXV0b2hvbWUuY29tLmNuLzAvMC8wLzQyMDAwMC80MjAxMDAvMC0wLTAtMS5odG1sI3B2YXJlYWlkPTIxMTMxOTU= 需求:获…

Fragment 调用PopupWindow 不显示这么回事

问题就在于 这个 tvCategory,页面刚创建就初始化 PopupWindow导致 取到的值为0 应该监听tvCategory 渲染完再去初始化PopupWindow

leetcode:合并两个有序链表

题目描述 题目链接:21. 合并两个有序链表 - 力扣(LeetCode) 题目分析 这个算法思路很简单:就是直接找小尾插 定义一个tail和head,对比两个链表结点的val,小的尾插到tail->next,如果一个链表…

git 更换远程仓库地址三种方法总结分享

因为公司更改了 gitlab 的网段地址,发现全部项目都需要重新更改远程仓库的地址了,所以做了个记录,说不定以后还会用到呢。 一、不删除远程仓库修改(最方便) # 查看远端地址 git remote -v # 查看远端仓库名 git rem…