2023年亚太杯数学建模思路 - 案例:粒子群算法

news2024/9/20 9:43:46

文章目录

  • 1 什么是粒子群算法?
  • 2 举个例子
  • 3 还是一个例子
  • 算法流程
  • 算法实现
  • 建模资料

# 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是粒子群算法?

粒子群算法(Particle Swarm Optimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,应用非常广泛。粒子群算法于1995年提出,距今(2019)已有24年历史。
  
  粒子群算法中每一个粒子的位置代表了待求问题的一个候选解。每一个粒子的位置在空间内的好坏由该粒子的位置在待求问题中的适应度值决定。每一个粒子在下一代的位置有其在这一代的位置与其自身的速度矢量决定,其速度决定了粒子每次飞行的方向和距离。在飞行过程中,粒子会记录下自己所到过的最优位置 P,群体也会更新群体所到过的最优位置G 。粒子的飞行速度则由其当前位置、粒子自身所到过的最优位置、群体所到过的最优位置以及粒子此时的速度共同决定。

在这里插入图片描述

2 举个例子

在这里插入图片描述
在一个湖中有两个人他们之间可以通信,并且可以探测到自己所在位置的最低点。初始位置如上图所示,由于右边比较深,因此左边的人会往右边移动一下小船。

在这里插入图片描述

现在左边比较深,因此右边的人会往左边移动一下小船

一直重复该过程,最后两个小船会相遇

在这里插入图片描述
得到一个局部的最优解
在这里插入图片描述将每个个体表示为粒子。每个个体在某一时刻的位置表示为,x(t),方向表示为v(t)

在这里插入图片描述

p(t)为在t时刻x个体的自己的最优解,g(t)为在t时刻所有个体的最优解,v(t)为个体在t时刻的方向,x(t)为个体在t时刻的位置

在这里插入图片描述

下一个位置为上图所示由x,p,g共同决定了

在这里插入图片描述

种群中的粒子通过不断地向自身和种群的历史信息进行学习,从而可以找到问题的最优解。

3 还是一个例子

粒子群算法是根据鸟群觅食行为衍生出的算法。现在,我们的主角换成是一群鸟。
在这里插入图片描述

小鸟们的目标很简单,要在这一带找到食物最充足的位置安家、休养生息。它们在这个地方的搜索策略如下:
  1. 每只鸟随机找一个地方,评估这个地方的食物量。
  2. 所有的鸟一起开会,选出食物量最多的地方作为安家的候选点G。
  3. 每只鸟回顾自己的旅程,记住自己曾经去过的食物量最多的地方P。
  4. 每只鸟为了找到食物量更多的地方,于是向着G飞行,但是呢,不知是出于选择困难症还是对P的留恋,或者是对G的不信任,小鸟向G飞行时,时不时也向P飞行,其实它自己也不知道到底是向G飞行的多还是向P飞行的多。
  5. 又到了开会的时间,如果小鸟们决定停止寻找,那么它们会选择当前的G来安家;否则继续2->3->4->5来寻找它们的栖息地。

在这里插入图片描述

上图描述的策略4的情况,一只鸟在点A处,点G是鸟群们找到过的食物最多的位置,点P是它自己去过的食物最多的地点。V是它现在的飞行速度(速度是矢量,有方向和大小),现在它决定向着P和G飞行,但是这是一只佛系鸟,具体飞多少随缘。如果没有速度V,它应该飞到B点,有了速度V的影响,它的合速度最终使它飞到了点C,这里是它的下一个目的地。如果C比P好那么C就成了下一次的P,如果C比G好,那么就成了下一次的G。

算法流程

在这里插入图片描述

算法实现

这里学长用python来给大家演示使用粒子群解函数最优解

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
import random


# 定义“粒子”类
class parti(object):
    def __init__(self, v, x):
        self.v = v                    # 粒子当前速度
        self.x = x                    # 粒子当前位置
        self.pbest = x                # 粒子历史最优位置

class PSO(object):
    def __init__(self, interval, tab='min', partisNum=10, iterMax=1000, w=1, c1=2, c2=2):
        self.interval = interval                                            # 给定状态空间 - 即待求解空间
        self.tab = tab.strip()                                              # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值
        self.iterMax = iterMax                                              # 迭代求解次数
        self.w = w                                                          # 惯性因子
        self.c1, self.c2 = c1, c2                                           # 学习因子
        self.v_max = (interval[1] - interval[0]) * 0.1                      # 设置最大迁移速度
        #####################################################################
        self.partis_list, self.gbest = self.initPartis(partisNum)                 # 完成粒子群的初始化,并提取群体历史最优位置
        self.x_seeds = np.array(list(parti_.x for parti_ in self.partis_list))    # 提取粒子群的种子状态 ###
        self.solve()                                                              # 完成主体的求解过程
        self.display()                                                            # 数据可视化展示

    def initPartis(self, partisNum):
        partis_list = list()
        for i in range(partisNum):
            v_seed = random.uniform(-self.v_max, self.v_max)
            x_seed = random.uniform(*self.interval)
            partis_list.append(parti(v_seed, x_seed))
        temp = 'find_' + self.tab
        if hasattr(self, temp):                                             # 采用反射方法提取对应的函数
            gbest = getattr(self, temp)(partis_list)
        else:
            exit('>>>tab标签传参有误:"min"|"max"<<<')
        return partis_list, gbest

    def solve(self):
        for i in range(self.iterMax):
            for parti_c in self.partis_list:
                f1 = self.func(parti_c.x)
                # 更新粒子速度,并限制在最大迁移速度之内
                parti_c.v = self.w * parti_c.v + self.c1 * random.random() * (parti_c.pbest - parti_c.x) + self.c2 * random.random() * (self.gbest - parti_c.x)
                if parti_c.v > self.v_max: parti_c.v = self.v_max
                elif parti_c.v < -self.v_max: parti_c.v = -self.v_max
                # 更新粒子位置,并限制在待解空间之内
                if self.interval[0] <= parti_c.x + parti_c.v <=self.interval[1]:
                    parti_c.x = parti_c.x + parti_c.v
                else:
                    parti_c.x = parti_c.x - parti_c.v
                f2 = self.func(parti_c.x)
                getattr(self, 'deal_'+self.tab)(f1, f2, parti_c)             # 更新粒子历史最优位置与群体历史最优位置

    def func(self, x):                                                       # 状态产生函数 - 即待求解函数
        value = np.sin(x**2) * (x**2 - 5*x)
        return value

    def find_min(self, partis_list):                                         # 按状态函数最小值找到粒子群初始化的历史最优位置
        parti = min(partis_list, key=lambda parti: self.func(parti.pbest))
        return parti.pbest

    def find_max(self, partis_list):
        parti = max(partis_list, key=lambda parti: self.func(parti.pbest))   # 按状态函数最大值找到粒子群初始化的历史最优位置
        return parti.pbest

    def deal_min(self, f1, f2, parti_):
        if f2 < f1:                          # 更新粒子历史最优位置
            parti_.pbest = parti_.x
        if f2 < self.func(self.gbest):
            self.gbest = parti_.x            # 更新群体历史最优位置

    def deal_max(self, f1, f2, parti_):
        if f2 > f1:                          # 更新粒子历史最优位置
            parti_.pbest = parti_.x
        if f2 > self.func(self.gbest):
            self.gbest = parti_.x            # 更新群体历史最优位置

    def display(self):
        print('solution: {}'.format(self.gbest))
        plt.figure(figsize=(8, 4))
        x = np.linspace(self.interval[0], self.interval[1], 300)
        y = self.func(x)
        plt.plot(x, y, 'g-', label='function')
        plt.plot(self.x_seeds, self.func(self.x_seeds), 'b.', label='seeds')
        plt.plot(self.gbest, self.func(self.gbest), 'r*', label='solution')
        plt.xlabel('x')
        plt.ylabel('f(x)')
        plt.title('solution = {}'.format(self.gbest))
        plt.legend()
        plt.savefig('PSO.png', dpi=500)
        plt.show()
        plt.close()


if __name__ == '__main__':
    PSO([-9, 5], 'max')

效果
在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1238630.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

银河麒麟V10-ARM架构-postgresql安装与部署指南

提示&#xff1a;本人长期接收外包任务。 前言 本文详细介绍应用源码进行pgsql的安装步骤&#xff0c;本文以postgresql-12.0为例。 一、下载并解压安装包 ☆下载地址&#xff1a;https://ftp.postgresql.org/pub/source/ 解压安装包&#xff0c;创建安装路径&#xff1a; …

产品需求分析师的基本职责(合集)

产品需求分析师的基本职责1 职责 1、主要对用友司库云产品进行调研及产品规划; 2、根据司库云业务需求进行详细需求的用户故事、原型设计、需求分析、详细需求文档编写等; 3、进行产品的需求管理、需求验证、产品演示等需求工作; 4、配合开发、UE人员完成对产品的开发任务;…

了解CCC认证流程,确保产品合规通过

CCC认证是指中国强制性产品认证制度&#xff0c;也是中国国家质量监督检验检疫总局实施的一项重要认证制度。对于想要在中国市场销售的产品来说&#xff0c;CCC认证是必不可少的步骤。本文将详细介绍CCC认证的流程&#xff0c;帮助您了解并确保产品顺利通过认证。 第一步&#…

【React-Router】路由导航

1. 概念 路由系统中的多个路由之间需要进行路由跳转&#xff0c;并且在跳转的同时有可能需要传递参数进行通信。 2. 声明式导航 // /page/Login/index.jsimport { Link } from react-router-dom const Login () > {return <div>登录页{/* 解析成 a 链接 */}<Li…

CentOS7 FTP服务创建

一、安装FTP sudo dnf install vsftpd 二、设置防火墙&#xff0c;允许访问FTP //给防火墙增加一个允许的ftp服务(--permanent永久生效,重启后依然生效) sudo firewall-cmd --permanent --zonepublic --add-serviceftp//修改完后需要重启防火墙 sudo firewall-cmd --reload …

C#使用whisper.net实现语音识别(语音转文本)

目录 介绍 效果 输出信息 项目 代码 下载 介绍 github地址&#xff1a;https://github.com/sandrohanea/whisper.net Whisper.net. Speech to text made simple using Whisper Models 模型下载地址&#xff1a;https://huggingface.co/sandrohanea/whisper.net/tree…

【kubernetes】k8s架构之节点

文章目录 1、集群架构示意图2、概述3、管理3.1 节点名称唯一性3.2 节点自注册3.3 手动节点管理 4、节点状态4.1 地址&#xff08;Addresses&#xff09;4.2 状况&#xff08;Condition&#xff09;4.3 容量&#xff08;Capacity&#xff09;与可分配&#xff08;Allocatable&am…

java:application.properties的详细使用以及区分环境

文章目录 什么是application.properties文件&#xff1f;如何在Java中使用application.properties文件&#xff1f;将数据注入到 Bean 中使用自定义的配置文件使用命令行参数进行配置配置文件的优先级加载外部的配置文件多环境配置1、创建配置文件2、在 application.properties…

Python语言:猜数字游戏案例讲解

猜数字游戏题目要求如下&#xff1a;该程序随机生成一个1到100之间的整数&#xff0c;然后要求玩家在有限的次数内猜出这个数字。如果玩家猜对了&#xff0c;游戏结束并显示成功信息&#xff1b;如果玩家猜错了&#xff0c;程序会提示玩家猜的数字是偏大还是偏小&#xff0c;并…

OpenLayers实战,WebGL图层根据Feature要素的变量动态渲染多种颜色、不同长度和不同透明度的长方形(矩形)图形,适用于大量矩形图形渲染

专栏目录: OpenLayers实战进阶专栏目录 前言 本章使用OpenLayers根据Feature要素的变量动态渲染多种颜色、不同长度和不同透明度的矩形(长方形、四边形和正方形)图形。 通过一个WebGL图层生成四种不同颜色、不同大小和不同透明度的矩形图形要素,适用于WebGL图层根据大量点…

ATFX汇市:非美货币扎堆升值,唯有USDCAD表现平平

ATFX汇市&#xff1a;10月4日至今&#xff0c;美元指数累计跌幅已经超过3.6%&#xff0c;最低触及103.18点&#xff0c;中期均线MA30被跌破&#xff0c;强势周期可能即将转变为弱势周期。随着美元的下跌&#xff0c;大部分非美货币快速升值&#xff0c;欧元、英镑、日元的升值幅…

以45°斜抛水平距离最远

已知&#xff1a;斜抛物体的初速度为 v 0 v_0 v0​&#xff08;与水平方向的夹角为 θ \theta θ&#xff09;&#xff0c;重力加速度为 g g g。 求&#xff1a;抛物轨迹方程&#xff1f; 垂直方向的速度为 v y v 0 sin ⁡ θ − g t v_yv_0 \sin \theta -gt vy​v0​sinθ−…

modbus协议及modbus TCP协议

一、Modbus协议 1.起源 Modbus由Modicon公司于1979年开发&#xff0c;是一种工业现场总线协议标准。 Modbus通信协议具有多个变种&#xff0c;其中有支持串口&#xff0c;以太网多个版本&#xff0c;其中最著名的是Modbus RTU&#xff08;通信效率最高&#xff0c;基于串口&am…

读不懂客户,就不足以谈商业成功

数字化的背后&#xff0c;是对顾客心理和行为的深度洞察。因此&#xff0c;品牌营销运营数字化&#xff0c;不仅仅是为了收集转化率数据&#xff0c;也需要通过设计数据指标&#xff0c;更深地了解顾客。 门店管理也是如此&#xff0c;打造未来空间的数智化管理方式&#xff0c…

中低压MOSFET 2N7002T 60V 300mA 双N通道 SOT-523封装

2N7002KW小电流双N通道MOSFET&#xff0c;电压60V电流300mA&#xff0c;采用SOT-523封装形式。低Ros (on)的高密度单元设计&#xff0c;压控小信号开关&#xff0c;具有高饱和电流能力&#xff0c;ESD保护。可应用于直流/直流转换器&#xff0c;电池开关&#xff0c;便携式设备…

IDEA 配置maven结合案例使用篇

1. 项目需求和结构分析 需求案例&#xff1a;搭建一个电商平台项目&#xff0c;该平台包括用户服务、订单服务、通用工具模块等。 项目架构&#xff1a; 用户服务&#xff1a;负责处理用户相关的逻辑&#xff0c;例如用户信息的管理、用户注册、登录等。 spring-context 6.0.…

CentOS 7 升级gcc/g++ 至7.3、8.3、9.3

功能需求&#xff1a;CentOS 7 编译安装spdlog-1.12.0 提示如下错误信息&#xff1a; [rootlocalhost build]# cmake .. && make -j -- Build spdlog: 1.12.0 -- Build type: Release -- Generating example(s) -- Generating install -- Configuring done -- Generat…

02房价预测

目录 代码 评分算法&#xff1a; 代码 import numpy as np from sklearn import datasets from sklearn.linear_model import LinearRegression# 指定版本才有数据集 # C:\Users\14817\PycharmProjects\pythonProject1\venv\Scripts\activate.bat # pip install scikit-le…

云服务器-从零搭建前后端服务

使用须知 选择0M带宽不能访问公网&#xff08;不分配公网IP&#xff09;&#xff0c;如需分配公网IP请增加带宽值。云服务器ECS默认不开启虚拟内存如您需要使用请登录云服务器内部操作。Linux开启swap&#xff08;虚拟内存&#xff09;、Windows虚拟内存的设置若您购买了数据盘…

2023-11-21 LeetCode每日一题(美化数组的最少删除数)

2023-11-21每日一题 一、题目编号 2216. 美化数组的最少删除数二、题目链接 点击跳转到题目位置 三、题目描述 给你一个下标从 0 开始的整数数组 nums &#xff0c;如果满足下述条件&#xff0c;则认为数组 nums 是一个 美丽数组 &#xff1a; nums.length 为偶数对所有满…