【C++】C++11(2)

news2025/1/8 11:56:21

文章目录

  • 一、新的类功能
  • 二、可变参数模板(了解)
  • 三、lambda表达式
    • 1. C++98中的一个例子
    • 2.lambda表达式
    • 3.lambda表达式语法
    • 4.函数对象与lambda表达式
  • 四、包装器
    • 1.function包装器
    • 2.bind
  • 五、线程库
    • 1.thread类的简单介绍
    • 2.线程函数参数
    • 3.原子性操作库(atomic)
    • 4.lock_guard与unique_lock
      • (1)mutex的种类
      • (2)lock_guard
      • (3)unique_lock
      • (4)支持两个线程交替打印,一个打印奇数,一个打印偶数


一、新的类功能

  • 默认函数成员

原来C++类中,有6个默认成员函数:

  1. 构造函数
  2. 析构函数
  3. 拷贝构造函数
  4. 拷贝赋值重载
  5. 取地址重载
  6. const 取地址重载

最后重要的是前4个,后两个用处不大。默认成员函数就是我们不写编译器会生成一个默认的。

C++11 新增了两个:移动构造函数移动赋值运算符重载

针对移动构造函数和移动赋值运算符重载有一些需要注意的点如下:

  • 如果你没有自己实现移动构造函数,且没有实现析构函数 、拷贝构造、拷贝赋值重载中的任意一个。那么编译器会自动生成一个默认移动构造。默认生成的移动构造函数,对于内置类型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动构造,如果实现了就调用移动构造,没有实现就调用拷贝构造。

  • 如果你提供了移动构造或者移动赋值,编译器不会自动提供拷贝构造和拷贝赋值。

  • 类成员变量初始化

C++11允许在类定义时给成员变量初始缺省值,默认生成构造函数会使用这些缺省值初始化,这个我在类和对象的文章中已经进行过介绍,这里就不再细讲了。

  • 强制生成默认函数的关键字default:

C++11可以让你更好的控制要使用的默认函数。假设你要使用某个默认的函数,但是因为一些原因这个函数没有默认生成。比如:我们提供了拷贝构造,就不会生成移动构造了,那么我们可以使用default关键字显示指定移动构造生成。

class Person
{
public:
	Person(const char* name = "", int age = 0)
		:_name(name)
		, _age(age)
	{}

	Person(const Person& p)
		:_name(p._name)
		, _age(p._age)
	{}

	Person(Person&& p) = default;

private:
	bit::string _name;
	int _age;
};

int main()
{
	Person s1;
	Person s2 = s1;
	Person s3 = std::move(s1);
	return 0;
}
  • 禁止生成默认函数的关键字delete:

如果能想要限制某些默认函数的生成,在C++98中,是该函数设置成private,并且只声明补丁,这样只要其他人想要调用就会报错。在C++11中更简单,只需在该函数声明加上=delete即可,该语法指示编译器不生成对应函数的默认版本,称=delete修饰的函数为删除函数。

class Person
{
public:
	Person(const char* name = "", int age = 0)
		:_name(name)
		, _age(age)
	{}

	Person(const Person& p) = delete;

private:
	bit::string _name;
	int _age;
};

int main()
{
	Person s1;
	Person s2 = s1;
	Person s3 = std::move(s1);
	return 0;
}
  • 继承和多态中的final与override关键字

这个我在继承和多态章节已经进行了详细讲解这里就不再细讲,需要的话去复习继承和多态文章吧。


二、可变参数模板(了解)

C++11的新特性可变参数模板能够让您创建可以接受可变参数的函数模板和类模板,相比C++98/03,类模版和函数模版中只能含固定数量的模版参数,可变模版参数无疑是一个巨大的改进。然而由于可变模版参数比较抽象,使用起来需要一定的技巧,所以这块还是比较晦涩的。现阶段呢,我们掌握一些基础的可变参数模板特性就够我们用了,所以这里我们点到为止,以后大家如果有需要,再可以深入学习。

下面就是一个基本可变参数的函数模板

// Args是一个模板参数包,args是一个函数形参参数包
// 声明一个参数包Args...args,这个参数包中可以包含0到任意个模板参数。
template <class ...Args>
void ShowList(Args... args)
{}

上面的参数args前面有省略号,所以它就是一个可变模版参数,我们把带省略号的参数称为“参数包”,它里面包含了0到N(N>=0)个模版参数。

我们是无法直接获取参数包args中的每个参数的,只能通过展开参数包的方式来获取参数包中的每个参数,这是使用可变模版参数的一个主要特点,也是最大的难点,即如何展开可变模版参数。由于语法不支持使用args[i]这样方式获取可变参数,所以我们的用一些奇招来一一获取参数包的值。

  • 递归函数方式展开参数包
// 递归终止函数
template <class T>
void ShowList(const T& t)
{
	cout << t << endl;
}

// 展开函数
template <class T, class ...Args>
void ShowList(T value, Args... args) //当参数包>0时,递归调用自己,=0时调用递归终止函数
{
	cout << value << " ";
	ShowList(args...);
}

int main()
{
	ShowList(1);
	ShowList(1, 'A');
	ShowList(1, 'A', std::string("sort"));

	return 0;
}
  • 逗号表达式展开参数包

这种展开参数包的方式,不需要通过递归终止函数,是直接在expand函数体中展开的, printArg不是一个递归终止函数,只是一个处理参数包中每一个参数的函数。这种就地展开参数包的方式实现的关键是逗号表达式。我们知道逗号表达式会按顺序执行逗号前面的表达式。

expand函数中的逗号表达式:(printarg(args), 0),也是按照这个执行顺序,先执行printarg(args),再得到逗号表达式的结果0。同时还用到了C++11的另外一个特性——初始化列表,通过初始化列表来初始化一个变长数组, {(printarg(args), 0)…}将会展开成((printarg(arg1),0), (printarg(arg2),0), (printarg(arg3),0), etc… ),最终会创建一个元素值都为0的数组int arr[sizeof...(Args)]

由于是逗号表达式,在创建数组的过程中会先执行逗号表达式前面的部分printarg(args)打印出参数,也就是说在构造int数组的过程中就将参数包展开了,这个数组的目的纯粹是为了在数组构造的过程展开参数包。

template <class T>
void PrintArg(T t)
{
	cout << t << " ";
}

//展开函数
template <class ...Args>
void ShowList(Args... args)
{
	int arr[] = { (PrintArg(args), 0)... };
	cout << endl;
}

int main()
{
	ShowList(1);
	ShowList(1, 'A');
	ShowList(1, 'A', std::string("sort"));
	return 0;
}
  • STL容器中的empalce相关接口函数:

vector的emplace_back接口文档介绍

list的emplace_back接口文档介绍

template <class... Args>
void emplace_back(Args&&... args);

首先我们看到的emplace系列的接口,支持模板的可变参数,并且万能引用。那么相对push_back,emplace系列接口的优势到底在哪里呢?

int main()
{
	std::list< std::pair<int, char> > mylist;
	// emplace_back支持可变参数,拿到构建pair对象的参数后自己去创建对象
	// 那么在这里我们可以看到除了用法上,和push_back没什么太大的区别
	mylist.emplace_back(10, 'a');
	mylist.emplace_back(20, 'b');
	mylist.emplace_back(make_pair(30, 'c'));
	mylist.push_back(make_pair(40, 'd'));
	mylist.push_back({ 50, 'e' });
	for (auto e : mylist)
		cout << e.first << ":" << e.second << endl;
	return 0;
}
int main()
{
	// 下面我们试一下带有拷贝构造和移动构造的bit::string,再试试呢
	// 我们会发现其实差别也不大,emplace_back是直接构造了,
	// push_back是先构造,再移动构造,其实也还好。
	std::list< std::pair<int, bit::string> > mylist;
	mylist.emplace_back(10, "sort");		//直接构造
	mylist.emplace_back(make_pair(20, "sort"));
    
	mylist.push_back(make_pair(30, "sort"));	//构造,再移动构造(push_back一次只能传一个数据)
	mylist.push_back({ 40, "sort" });

	return 0;
}

三、lambda表达式

1. C++98中的一个例子

在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法。

#include <algorithm>
#include <functional>

int main()
{
	int array[] = { 4,1,8,5,3,7,0,9,2,6 };

	// 默认按照小于比较,排出来结果是升序
	std::sort(array, array + sizeof(array) / sizeof(array[0]));

	// 如果需要降序,需要改变元素的比较规则
	std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>());

	return 0;
}

如果待排序元素为自定义类型,需要用户定义排序时的比较规则:

struct Goods
{
	string _name;  // 名字
	double _price; // 价格
	int _evaluate; // 评价

	Goods(const char* str, double price, int evaluate)
		:_name(str)
		, _price(price)
		, _evaluate(evaluate)
	{}
};

struct ComparePriceLess
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price < gr._price;
	}
};

struct ComparePriceGreater
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price > gr._price;
	}
};

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
   3 }, { "菠萝", 1.5, 4 } };

	sort(v.begin(), v.end(), ComparePriceLess());
	sort(v.begin(), v.end(), ComparePriceGreater());
}

随着C++语法的发展,人们开始觉得上面的写法太复杂了,每次为了实现一个algorithm(算法),都要重新去写一个类,如果每次比较的逻辑不一样,还要去实现多个类,特别是相同类的命名,这些都给编程者带来了极大的不便。因此,在C++11语法中出现了Lambda表达式

2.lambda表达式

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
   3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price < g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price > g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate < g2._evaluate; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate > g2._evaluate; });
}

上述代码就是使用C++11中的lambda表达式来解决,可以看出lambda表达式实际是一个匿名函数。

3.lambda表达式语法

lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement}

  • lambda表达式各部分说明
    • [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据 [] 来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用
    • (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略.
    • mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。
    • ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。
    • {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

注意:

  • 在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空
  • 因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。
int main()
{
	// 最简单的lambda表达式, 该lambda表达式没有任何意义
	[] {};

	// 省略参数列表和返回值类型,返回值类型由编译器推导为int
	int a = 3, b = 4;
	[=] {return a + 3; };

	// 省略了返回值类型,无返回值类型
	auto fun1 = [&](int c) {b = a + c; };
	fun1(10)
		cout << a << " " << b << endl;

	// 各部分都很完善的lambda函数
	auto fun2 = [=, &b](int c)->int {return b += a + c; };
	cout << fun2(10) << endl;

	// 复制捕捉x
	int x = 10;
	auto add_x = [x](int a) mutable { x *= 2; return a + x; };
	cout << add_x(10) << endl;
	return 0;
}

通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量。

  • 捕获列表说明
    • 捕捉列表描述了上下文中哪些数据可以被lambda使用,以及使用的方式传值还是传引用。
    • [var]:表示值传递方式捕捉变量var
    • [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
    • [&var]:表示引用传递捕捉变量var
    • [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
    • [this]:表示值传递方式捕捉当前的this指针

注意:

a. 父作用域指包含lambda函数的语句块

b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量; [&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量。

c. 捕捉列表不允许变量重复传递,否则就会导致编译错误。比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复。

d. 在块作用域以外的lambda函数捕捉列表必须为空

e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都 会导致编译报错。

f. lambda表达式之间不能相互赋值,即使看起来类型相同。

void (*PF)();
int main()
{
	auto f1 = [] {cout << "hello world" << endl; };
	auto f2 = [] {cout << "hello world" << endl; };

	// 此处先不解释原因,等lambda表达式底层实现原理看完后,大家就清楚了
	//f1 = f2;   // 编译失败--->提示找不到operator=()
	// 允许使用一个lambda表达式拷贝构造一个新的副本
	auto f3(f2);
	f3();

	// 可以将lambda表达式赋值给相同类型的函数指针
	PF = f2;
	PF();
	return 0;
}

4.函数对象与lambda表达式

函数对象,又称为仿函数,即可以像函数一样使用的对象,其实就是在类中重载了operator()运算符的类对象。

class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}

	double operator()(double money, int year)
	{
		return money * _rate * year;	//这里的*是相乘的意思
	}

private:
	double _rate;
};

int main()
{
	// 函数对象
	double rate = 0.49;
	Rate r1(rate);
	r1(10000, 2);

	// lamber
	auto r2 = [=](double monty, int year)->double {return monty * rate * year;
	};
	r2(10000, 2);

	return 0;
}

从使用方式上来看,函数对象与lambda表达式完全一样。

函数对象将rate作为其成员变量,在定义对象时给出初始值即可,lambda表达式通过捕获列表可以直接将该变量捕获到。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()。


四、包装器

1.function包装器

function包装器 也叫作适配器。C++中的function本质是一个类模板,也是一个包装器。

那么我们来看看,我们为什么需要function呢?

ret = func(x);
// 上面func可能是什么呢?那么func可能是函数名?函数指针?函数对象(仿函数对象)?也有可能
// 是lamber表达式对象?所以这些都是可调用的类型!如此丰富的类型,可能会导致模板的效率低下!
// 为什么呢?我们继续往下看
template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}

double f(double i)
{
	return i / 2;
}

struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};

int main()
{
	// 函数名
	cout << useF(f, 11.11) << endl;

	// 函数对象(仿函数对象)
	cout << useF(Functor(), 11.11) << endl;

	// lamber表达式
	cout << useF([](double d)->double { return d / 4; }, 11.11) << endl;

	return 0;
}

通过上面的程序验证,我们会发现useF函数模板实例化了三份

包装器可以很好的解决上面的问题,通过包装器的使用,可以让函数模板避免重复实例化。

std::function在头文件<functional>

// 类模板原型如下
template <class T> function;     // undefined

//使用包装器后
template <class Ret, class... Args>
class function<Ret(Args...)>;

模板参数说明:
Ret : 被调用函数的返回类型
Args…:被调用函数的形参

下面是一个使用方法的单独示例

// 使用方法如下:
#include <functional>
int f(int a, int b)
{
	return a + b;
}

struct Functor
{
public:
	int operator() (int a, int b)
	{
		return a + b;
	}
};

class Plus
{
public:
	static int plusi(int a, int b)
	{
		return a + b;
	}
	double plusd(double a, double b)
	{
		return a + b;
	}
};

int main()
{
	// 函数名(函数指针)
	std::function<int(int, int)> func1 = f;
	cout << func1(1, 2) << endl;

	// 函数对象
	std::function<int(int, int)> func2 = Functor();
	cout << func2(1, 2) << endl;

	// lamber表达式
	std::function<int(int, int)> func3 = [](const int a, const int b)
	{return a + b; };
	cout << func3(1, 2) << endl;

	// 类的成员函数
	std::function<int(int, int)> func4 = &Plus::plusi;
	cout << func4(1, 2) << endl;
	std::function<double(Plus, double, double)> func5 = &Plus::plusd;
	cout << func5(Plus(), 1.1, 2.2) << endl;

	return 0;
}

有了包装器,如何解决模板的效率低下,实例化多份的问题呢?下面是使用示例的完整代码

#include <functional>
template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}

double f(double i)
{
	return i / 2;
}

struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};

int main()
{
	// 函数名
	std::function<double(double)> func1 = f;
	cout << useF(func1, 11.11) << endl;

	// 函数对象
	std::function<double(double)> func2 = Functor();
	cout << useF(func2, 11.11) << endl;

	// lamber表达式
	std::function<double(double)> func3 = [](double d)->double { return d /
		4; };
	cout << useF(func3, 11.11) << endl;

	return 0;
}

包装器的其他一些场景:

  • (这里要理解)
class Solution {
public:
	int evalRPN(vector<string>& tokens) {
		stack<int> st;
		for (auto& str : tokens)
		{
			if (str == "+" || str == "-" || str == "*" || str == "/")
			{
				int right = st.top();
				st.pop();
				int left = st.top();
				st.pop();
				switch (str[0])
				{
				case '+':
					st.push(left + right);
					break;
				case '-':
					st.push(left - right);
					break;
				case '*':
					st.push(left * right);
					break;
				case '/':
					st.push(left / right);
					break;
				}
			}
			else
			{
				// 1、atoi itoa
				// 2、sprintf scanf
				// 3、stoi to_string C++11
				st.push(stoi(str));
			}
		}
		return st.top();
	}
};

// 使用包装器以后的玩法
class Solution {
public:
	int evalRPN(vector<string>& tokens) {
		stack<int> st;

		map<string, function<int(int, int)>> opFuncMap =
		{
		{ "+", [](int i, int j) {return i + j; } },
		{ "-", [](int i, int j) {return i - j; } },
		{ "*", [](int i, int j) {return i * j; } },
		{ "/", [](int i, int j) {return i / j; } }
		};

		for (auto& str : tokens)
		{
			if (opFuncMap.find(str) != opFuncMap.end())
			{
				int right = st.top();
				st.pop();
				int left = st.top();
				st.pop();
                
				st.push(opFuncMap[str](left, right));
			}
			else
			{
				// 1、atoi itoa
				// 2、sprintf scanf
				// 3、stoi to_string C++11
				st.push(stoi(str));
			}
		}
        
		return st.top();
	}
};

2.bind

std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可调用对象(callable object),生成一个新的可调用对象来“适应”原对象的参数列表。一般而言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个(M可以大于N,但这么做没什么意义)参数的新函数。同时,使用std::bind函数还可以实现参数顺序调整等操作。

// 原型如下:
template <class Fn, class... Args>
/* unspecified */ bind(Fn&& fn, Args&&... args);

// with return type (2) 
template <class Ret, class Fn, class... Args>
/* unspecified */ bind(Fn&& fn, Args&&... args);

可以将bind函数看作是一个通用的函数适配器,它接受一个可调用对象,生成一个新的可调用对
象来“适应”原对象的参数列表。

调用bind的一般形式:auto newCallable = bind(callable,arg_list);

其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的callable的参数。当我们调用newCallable时,newCallable会调用callable,并传给它arg_list中的参数

arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对象中参数的位置:_1为newCallable的第一个参数,_2为第二个参数,以此类推.

// 使用举例
#include <functional>
int Plus(int a, int b)
{
	return a + b;
}

class Sub
{
public:
	int sub(int a, int b)
	{
		return a - b;
	}
};

int main()
{
	//表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定
	std::function<int(int, int)> func1 = std::bind(Plus, placeholders::_1,
		placeholders::_2);
	//auto func1 = std::bind(Plus, placeholders::_1, placeholders::_2);

	//func2的类型为 function<void(int, int, int)> 与func1类型一样
	//表示绑定函数 plus 的第一,二为: 1, 2
	auto  func2 = std::bind(Plus, 1, 2);
	cout << func1(1, 2) << endl;
	cout << func2() << endl;

	Sub s;
	// 绑定成员函数
	std::function<int(int, int)> func3 = std::bind(&Sub::sub, s,
		placeholders::_1, placeholders::_2);

	// 参数调换顺序(重点理解)
	std::function<int(int, int)> func4 = std::bind(&Sub::sub, s,
		placeholders::_2, placeholders::_1);
	cout << func3(1, 2) << endl;
	cout << func4(1, 2) << endl;

	return 0;
}

总结:通过 bind函数绑定函数和对应位置参数,可以实现同一调用函数(如上述代码中的减法函数sub)同一形参传入时(func3(1, 2) & func4(1, 2))的不同实现情况(1-2 & 2-1)。


五、线程库

1.thread类的简单介绍

在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的线程,必须包含< thread >头文件

C++中的线程类

函数名参数
功能
thread()构造一个线程对象,没有关联任何线程函数,即没有启动任何线程
thread(fn,
args1, args2,…)
构造一个线程对象,并关联线程函数fn,args1,args2,…为线程函数的
get_id()获取线程id
jionable()线程是否还在执行,joinable代表的是一个正在执行中的线程。
jion()该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行
detach()在创建线程对象后马上调用,用于把被创建线程与线程对象分离开,分离的线程变为后台线程,创建的线程的"死活"就与主线程无关

注意:

  1. 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的状态。

  2. 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。

    #include <thread>
    int main()
    {
    	std::thread t1;
    	cout << t1.get_id() << endl;
    	return 0;
    }
    

    get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中包含了一个结构体:

    // vs下查看
    typedef struct
    { /* thread identifier for Win32 */
    	void* _Hnd; /* Win32 HANDLE */
    	unsigned int _Id;
    } _Thrd_imp_t;
    
  3. 当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。线程函数一般情况下可按照以下三种方式提供:

    • 函数指针
    • lambda表达式
    • 函数对象
    #include <iostream>
    using namespace std;
    #include <thread>
    
    void ThreadFunc(int a)
    {
    	cout << "Thread1" << a << endl;
    }
    
    class TF
    {
    public:
    	void operator()()
    	{
    		cout << "Thread3" << endl;
    	}
    };
    
    int main()
    {
    	// 线程函数为函数指针
    	thread t1(ThreadFunc, 10);
    
    	// 线程函数为lambda表达式
    	thread t2([] {cout << "Thread2" << endl; });
    
    	// 线程函数为函数对象
    	TF tf;
    	thread t3(tf);
    
    	t1.join();
    	t2.join();
    	t3.join();
    	cout << "Main thread!" << endl;
    	return 0;
    }
    
  4. thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个线程对象关联线程的状态转移给其他线程对象,转移期间不意向线程的执行。

  5. 可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效

    • 采用无参构造函数构造的线程对象
    • 线程对象的状态已经转移给其他线程对象
    • 线程已经调用jion或者detach结束

2.线程函数参数

线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的,因此:即使线程参数为引用类型,在线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参

#include <thread>
void ThreadFunc1(int& x)
{
	x += 10;
}

void ThreadFunc2(int* x)
{
	*x += 10;
}

int main()
{
	int a = 10;

	// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际
	// 引用的是线程栈中的拷贝
	thread t1(ThreadFunc1, a);
	t1.join();
	cout << a << endl;

	// 如果想要通过形参改变外部实参时,必须借助std::ref()函数
	thread t2(ThreadFunc1, std::ref(a);
	t2.join();
	cout << a << endl;

	// 地址的拷贝
	thread t3(ThreadFunc2, &a);
	t3.join();
	cout << a << endl;
	return 0;
}

注意:如果是类成员函数作为线程参数时,必须将this作为线程函数参数。

3.原子性操作库(atomic)

多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。比如:

#include <iostream>
using namespace std;
#include <thread>

unsigned long sum = 0L;

void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
		sum++;
}

int main()
{
	cout << "Before joining,sum = " << sum << std::endl;

	thread t1(fun, 10000000);
	thread t2(fun, 10000000);

	t1.join();
	t2.join();

	cout << "After joining,sum = " << sum << std::endl;

	return 0;
}

注意:sum的最终结果将出现混乱(不符合预期10000000)。

C++98中传统的解决方式:可以对共享修改的数据可以加锁保护.

#include <iostream>
using namespace std;
#include <thread>
#include <mutex>

std::mutex m;
unsigned long sum = 0L;

void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
	{
		m.lock();	//加锁
		sum++;
		m.unlock();    //解锁
	}
}

int main()
{
	cout << "Before joining,sum = " << sum << std::endl;

	thread t1(fun, 10000000);
	thread t2(fun, 10000000);
	t1.join();
	t2.join();

	cout << "After joining,sum = " << sum << std::endl;

	return 0;
}

虽然加锁可以解决,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。

因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入的原子操作类型,使得线程间数据的同步变得非常高效。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

注意:需要使用以上原子操作变量时,必须添加头文件#include <atomic>。此时,原子类型对应的内置类型修改就变成原子的了。

#include <iostream>
using namespace std;
#include <thread>
#include <atomic>

atomic_long sum{ 0 };

void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
		sum++;   // 原子操作
}

int main()
{
	cout << "Before joining, sum = " << sum << std::endl;
	thread t1(fun, 1000000);
	thread t2(fun, 1000000);
	t1.join();
	t2.join();

	cout << "After joining, sum = " << sum << std::endl;
	return 0;
}

在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的访问

更为普遍的,程序员可以使用atomic类模板定义出需要的任意原子类型

atmoic<T> t;    // 声明一个类型为T的原子类型变量t

注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此**在C++11中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及operator=**等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算符重载默认删除掉了。

#include <atomic>
int main()
{
	atomic<int> a1(0);
	//atomic<int> a2(a1);   // 编译失败
	atomic<int> a2(0);
	//a2 = a1;               // 编译失败
	return 0;
}

4.lock_guard与unique_lock

在多线程环境下,如果想要保证某个变量的安全性,只要将其设置成对应的原子类型即可,即高效又不容易出现死锁问题。但是有些情况下,我们可能需要保证一段代码的安全性,那么就只能通过锁的方式来进行控制。

比如:一个线程对变量number进行加一100次,另外一个减一100次,每次操作加一或者减一之后,输出number的结果,要求:number最后的值为1。

#include <thread>
#include <mutex>

int number = 0;
mutex g_lock;

int ThreadProc1()
{
	for (int i = 0; i < 100; i++)
	{
		g_lock.lock();
		++number;
		cout << "thread 1 :" << number << endl;
		g_lock.unlock();
	}

	return 0;
}

int ThreadProc2()
{
	for (int i = 0; i < 100; i++)
	{
		g_lock.lock();
		--number;
		cout << "thread 2 :" << number << endl;
		g_lock.unlock();
	}

	return 0;
}

int main()
{
	thread t1(ThreadProc1);
	thread t2(ThreadProc2);

	t1.join();
	t2.join();

	cout << "number:" << number << endl;
	system("pause");

	return 0;
}

上述代码的缺陷:锁控制不好时,可能会造成死锁,最常见的比如在锁中间代码返回,或者在锁的范围内抛异常。因此:C++11采用RAII的方式对锁进行了封装,即lock_guardunique_lock

(1)mutex的种类

在C++11中,Mutex总共包了四个互斥量的种类:

  1. std::mutex

    C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用的三个函数:

    函数名函数功能
    lock()上锁:锁住互斥量
    unlock()解锁:释放对互斥量的所有权
    try_lock()尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞

    注意,线程函数调用lock()时,可能会发生以下三种情况:

    • 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁
    • 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住
    • 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)

    线程函数调用try_lock()时,可能会发生以下三种情况:

    • 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量

    • 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉

    • 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)

  2. std::recursive_mutex

    其允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),除此之外,std::recursive_mutex 的特性和 std::mutex 大致相同。

  3. std::timed_mutex

    比 std::mutex 多了两个成员函数,try_lock_for()try_lock_until()

    • try_lock_for()

      接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

    • try_lock_until()

      接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

  4. std::recursive_timed_mutex(略)

(2)lock_guard

std::lock_gurad 是 C++11 中定义的模板类。定义如下:

template<class _Mutex>
class lock_guard
{
public:
	// 在构造lock_gard时,_Mtx还没有被上锁
	explicit lock_guard(_Mutex& _Mtx)
		: _MyMutex(_Mtx)
	{
		_MyMutex.lock();
	}

	// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁
	lock_guard(_Mutex& _Mtx, adopt_lock_t)
		: _MyMutex(_Mtx)
	{}

	~lock_guard() _NOEXCEPT
	{
		_MyMutex.unlock();
	}

	lock_guard(const lock_guard&) = delete;
	lock_guard& operator=(const lock_guard&) = delete;

private:
	_Mutex& _MyMutex;
};

通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁问题

lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了unique_lock。

(3)unique_lock

与lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题

与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:

  • 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
  • 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
  • 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相
    同)、mutex(返回当前unique_lock所管理的互斥量的指针)。

(4)支持两个线程交替打印,一个打印奇数,一个打印偶数

本节主要演示了condition_variable(条件变量)的使用,condition_variable在我的linux博客中已经讲过了,他们用来进行线程之间的互相通知。condition_variable和Linux posix的条件变量并没有什么大的区别,主要还是面向对象实现的。

条件变量的文档如下:

#include<iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
using namespace std;

void two_thread_print()
{
	std::mutex mtx;
	condition_variable c;
	int n = 100;
	bool flag = true;

	thread t1([&]() {
		int i = 0;
		while (i < n)
		{
			unique_lock<mutex> lock(mtx);
			c.wait(lock, [&]()->bool {return flag; });	//如果flag = false,线程等待
			cout << i << endl;
			flag = false;
			i += 2; // 偶数
			c.notify_one();		//唤醒线程
		}
		});

	thread t2([&]() {
		int j = 1;
		while (j < n)
		{
			unique_lock<mutex> lock(mtx);
			c.wait(lock, [&]()->bool {return !flag; });	//如果flag != false,线程等待
			cout << j << endl;
			j += 2; // 奇数
			flag = true;
			c.notify_one();
		}
		});

	t1.join();
	t2.join();
}

int main()
{
	two_thread_print();

	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1236686.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

909-2014-T2

文章目录 1.原题2.算法思想3.关键代码4.完整代码5.运行结果 1.原题 二叉树采用二叉链表存储结构&#xff0c;设计算法&#xff0c;判断二叉树是否为满二叉树。叙述算法思想并给出算法实现。 2.算法思想 通过一次遍历&#xff0c;得到结点个数和树的高度。用结点个数和树的高…

Spring Cloud实战 |分布式系统的流量控制、熔断降级组件Sentinel如何使用

专栏集锦&#xff0c;大佬们可以收藏以备不时之需 Spring Cloud实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏&#xff1a;https:/…

PowerShell无人参与安装最新版本SQL Server Management Studio (SSMS)

文章目录 下载SQL Server Management Studio (SSMS)Power Shell实现无人安装推荐阅读 下载SQL Server Management Studio (SSMS) SSMS 19.2 是最新的正式发布 (GA) 版本。 如果已经安装了 SSMS 19 预览版&#xff0c;需要在安装 SSMS 19.2 之前将其卸载。 如果安装了 SSMS 19.…

java io流中为什么使用缓冲流就能加快文件读写速度

FileInputStream的read方法底层确实是通过调用JDK层面的read方法&#xff0c;并且这个JDK层面的read方法底层是使用C语言编写的&#xff0c;以实现高效的文件读取功能。但是它会涉及多次内核态与操作系统交互。当我们使用FileInputStream的read方法读取文件时&#xff0c;首先会…

Java并发编程第12讲——cancelAcquire()流程详解及acquire方法总结

上篇文章介绍了AQS的设计思想以及独占式获取和释放同步状态的源码分析&#xff0c;但是还不够&#xff0c;一是感觉有点零零散散&#xff0c;二是里面还有很多细节没介绍到——比如cancelAcquire()方法&#xff08;重点&#xff09;&#xff0c;迫于篇幅原因&#xff0c;今天就…

[超详细]基于YOLO&OpenCV的人流量统计监测系统(源码&部署教程)

1.图片识别 2.视频识别 [YOLOv7]基于YOLO&#xff06;Deepsort的人流量统计系统(源码&#xff06;部署教程)_哔哩哔哩_bilibili 3.Deepsort目标追踪 &#xff08;1&#xff09;获取原始视频帧 &#xff08;2&#xff09;利用目标检测器对视频帧中的目标进行检测 &#xff08…

MAX/MSP SDK学习04:Messages selector的使用

其实消息选择器在simplemax示例中就接触到了&#xff0c;但这文档非要讲那么抽象。目前为止对消息选择器的理解是&#xff1a;可判断接收过来的消息是否符合本Object的处理要求&#xff0c;比如加法对象只可接收数值型的消息以处理&#xff0c;但不能接收t_symbol型的消息&…

2024电脑录屏软件排行第一Camtasia喀秋莎

真的要被录屏软件给搞疯了&#xff0c;本来公司说要给新人做个培训视频&#xff0c;想着把视频录屏一下&#xff0c;然后简单的剪辑一下就可以了。可谁知道录屏软件坑这么多&#xff0c;弄来弄去头都秃了&#xff0c;不过在头秃了几天之后&#xff0c;终于让我发现了一个值得“…

ck 配置 clickhouse-jdbc-bridge

背景 ck可以用过clickhouse-jdbc-bridge技术来直接访问各数据库 安装配置 需要准备的文件 clickhouse-jdbc-bridge https://github.com/ClickHouse/clickhouse-jdbc-bridge 理论上需要下载源码然后用mavne打包&#xff0c;但提供了打包好的&#xff0c;可以推测用的是mave…

层层剥开Android14升级后异常弹框的神秘面纱

本篇文章将会通过研究源码的方式给您讲述Android系统升级到Android14后出现的两个异常弹框并给出消除它们的方案。闲话少叙&#xff0c;我们开始。 问题描述 在Android 14升级后&#xff0c;出现两个弹窗的异常情况。这里是异常的截图&#xff1a; 接下来&#xff0c;我们对这…

1-verilog的串行滤波器FIR实现

verilog的串行滤波器FIR实现 1&#xff0c;RTL代码2&#xff0c;RTL原理框图3&#xff0c;测试代码4&#xff0c;输出FIR滤波器的波形 参考文献: 1&#xff0c;基于FPGA的串行FIR滤波器设计与实现 2&#xff0c;FPGA实现FIR滤波器 1&#xff0c;RTL代码 timescale 1ns / 1ps /…

子虔与罗克韦尔自动化合作 进博会签约自动化净零智造联创中心

11月6日进博会现场&#xff0c;漕河泾罗克韦尔自动化净零智造联创中心合作协议签约暨合作伙伴&#xff08;第一批&#xff09;授牌仪式举办&#xff0c;子虔科技作为联创中心合作伙伴签约&#xff0c;携手共建智能制造&#xff0c;引领行业可持续发展。 图示&#xff1a;子虔科…

从0开始学习JavaScript--深入理解JavaScript的async/await

JavaScript的异步编程在过去经历了回调地狱、Promise的引入&#xff0c;而今&#xff0c;通过async/await&#xff0c;让我们获得了更加优雅、可读性更高的异步编程方式。本文将深入探讨async/await的概念、用法&#xff0c;并通过丰富的示例代码展示其在实际应用中的威力。 理…

SPDK NVMe-oF target多路功能介绍

基本概念 SPDK NVMe-oF target multi-path是基于NVMe协议的multi-path IO和namespace sharing功能。 NVMe multi-path IO指的是两个或多个完全独立的PCI Express路径存在于一个主机和一个命名空间。 而namespace 共享是两个或多个主机使用不同的NVMe控制器访问一个shared na…

2023.11.22使用flask做一个简单的图片浏览器

2023.11.22使用flask做一个简单的图片浏览器 功能&#xff1a; 实现图片浏览&#xff08;翻页&#xff09;功能 程序页面&#xff1a; 程序架构&#xff1a; 注意&#xff1a;在flask中常会使用src“{{ url_for(‘static’, filename‘images/’ image) }}”&#xff0c…

利用ros实现单片机通讯(转载)

我觉得如果使用这个人的micro_ros通信协议&#xff0c;就不用再去Ubuntu或者Windows上面自己写驱动程序了&#xff0c; 利用micro_ros实现esp32与ros2的通讯 Tianci ​ 天津大学 工学博士 参考&#xff1a;https://github.com/micro-ROS/micro_ros_arduino https://blog.cs…

【开源】基于Vue和SpringBoot的服装店库存管理系统

项目编号&#xff1a; S 052 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S052&#xff0c;文末获取源码。} 项目编号&#xff1a;S052&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 角色管理模块2.3 服…

森林之子/Sons Of The Forest V42457 资源分享

游戏介绍&#xff1a; 视频介绍&#xff1a; 森林之子 资源分享 这里是引用 你被派到了一座孤岛上&#xff0c;寻找一位失踪的亿万富翁&#xff0c;结果却发现自己深陷被食人生物占领的炼狱之地。你需要制作工具和武器、建造房屋&#xff0c;倾尽全力生存下去&#xff0c;无论…

MySQL之BETWEEN AND包含范围查询总结

一、时间范围 查询参数格式与数据库类型相对应时&#xff0c;between and包含头尾&#xff0c;否则依情况 当数据库字段中存储的是yyyy-MM-dd格式&#xff0c;即date类型&#xff1a; 用between and查询&#xff0c; 参数yyyy-MM-dd格式时&#xff0c;包含头尾&#xff0c;相当…

【Flink】Process Function

目录 1、ProcessFunction解析 1.1 抽象方法.processElement() 1.2 非抽象方法.onTimer() 2、Flink中8个不同的处理函数 2.1 ProcessFunction 2.2 KeyedProcessFunction 2.3 ProcessWindowFunction 2.4 ProcessAllWindowFunction 2.5 CoProcessFunction 2.6 ProcessJo…