【Flink】Process Function

news2024/11/15 17:30:52

目录

1、ProcessFunction解析

1.1 抽象方法.processElement()

1.2 非抽象方法.onTimer()

2、Flink中8个不同的处理函数

2.1 ProcessFunction

2.2 KeyedProcessFunction

2.3 ProcessWindowFunction

2.4 ProcessAllWindowFunction

2.5 CoProcessFunction

2.6 ProcessJoinFunction

2.7 BroadcastProcessFunction

2.8 KeyedBroadcastProcessFunction

3、按键分区处理函数

3.1 定时器(Timer)和定时服务(TimerService)

4、窗口处理函数

4.1 窗口函数使用

4.2 ProcessWindowFunction解析


它是底层提炼的一个可以自定义处理逻辑的操作,被叫作“处理函数”(process function)

1、ProcessFunction解析

在源码中我们可以看到,抽象类ProcessFunction继承了AbstractRichFunction,有两个泛型类型参数:I表示Input,也就是输入的数据类型;O表示Output,也就是处理完成之后输出的数据类型。

内部单独定义了两个方法:一个是必须要实现的抽象方法.processElement();另一个是非抽象方法.onTimer()。

public abstract class ProcessFunction<I, O> extends AbstractRichFunction {

    ...
    public abstract void processElement(I value, Context ctx, Collector<O> out) throws Exception;

    public void onTimer(long timestamp, OnTimerContext ctx, Collector<O> out) throws Exception {}
    ...

}

1.1 抽象方法.processElement()

用于“处理元素”,定义了处理的核心逻辑。这个方法对于流中的每个元素都会调用一次,参数包括三个:输入数据值value,上下文ctx,以及“收集器”(Collector)out。方法没有返回值,处理之后的输出数据是通过收集器out来定义的。

  1. value:当前流中的输入元素,也就是正在处理的数据,类型与流中数据类型一致。
  2. ctx:类型是ProcessFunction中定义的内部抽象类Context,表示当前运行的上下文,可以获取到当前的时间戳,并提供了用于查询时间和注册定时器的“定时服务”(TimerService),以及可以将数据发送到“侧输出流”(side output)的方法.output()。
  3. out:“收集器”(类型为Collector),用于返回输出数据。使用方式与flatMap算子中的收集器完全一样,直接调用out.collect()方法就可以向下游发出一个数据。这个方法可以多次调用,也可以不调用。

通过几个参数的分析不难发现,ProcessFunction可以轻松实现flatMap、map、filter这样的基本转换功能;而通过富函数提供的获取上下文方法.getRuntimeContext(),也可以自定义状态(state)进行处理,这也就能实现聚合操作的功能了。

1.2 非抽象方法.onTimer()

定时方法.onTimer()也有三个参数:时间戳(timestamp),上下文(ctx),以及收集器(out)。这里的timestamp是指设定好的触发时间,事件时间语义下当然就是水位线了。另外这里同样有上下文和收集器,所以也可以调用定时服务(TimerService),以及任意输出处理之后的数据。

注意:在Flink中,只有“按键分区流”KeyedStream才支持设置定时器的操作。

2、Flink中8个不同的处理函数

2.1 ProcessFunction

最基本的处理函数,基于DataStream直接调用.process()时作为参数传入。

2.2 KeyedProcessFunction

对流按键分区后的处理函数,基于KeyedStream调用.process()时作为参数传入。要想使用定时器,比如基于KeyedStream。

2.3 ProcessWindowFunction

开窗之后的处理函数,也是全窗口函数的代表。基于WindowedStream调用.process()时作为参数传入。

2.4 ProcessAllWindowFunction

同样是开窗之后的处理函数,基于AllWindowedStream调用.process()时作为参数传入。

2.5 CoProcessFunction

合并(connect)两条流之后的处理函数,基于ConnectedStreams调用.process()时作为参数传入。关于流的连接合并操作,我们会在后续章节详细介绍。

2.6 ProcessJoinFunction

间隔连接(interval join)两条流之后的处理函数,基于IntervalJoined调用.process()时作为参数传入。

2.7 BroadcastProcessFunction

广播连接流处理函数,基于BroadcastConnectedStream调用.process()时作为参数传入。这里的“广播连接流”BroadcastConnectedStream,是一个未keyBy的普通DataStream与一个广播流(BroadcastStream)做连接(conncet)之后的产物。关于广播流的相关操作,我们会在后续章节详细介绍。

2.8 KeyedBroadcastProcessFunction

按键分区的广播连接流处理函数,同样是基于BroadcastConnectedStream调用.process()时作为参数传入。与BroadcastProcessFunction不同的是,这时的广播连接流,是一个KeyedStream与广播流(BroadcastStream)做连接之后的产物。

3、按键分区处理函数

只有在KeyedStream中才支持使用TimerService设置定时器的操作。所以一般情况下,我们都是先做了keyBy分区之后,再去定义处理操作;代码中更加常见的处理函数是KeyedProcessFunction。

3.1 定时器(Timer)和定时服务(TimerService

定时服务与当前运行的环境有关。ProcessFunction的上下文(Context)中提供了.timerService()方法,可以直接返回一个TimerService对象。TimerService是Flink关于时间和定时器的基础服务接口,包含以下六个方法:

// 获取当前的处理时间
long currentProcessingTime();

// 获取当前的水位线(事件时间)
long currentWatermark();

// 注册处理时间定时器,当处理时间超过time时触发
void registerProcessingTimeTimer(long time);

// 注册事件时间定时器,当水位线超过time时触发
void registerEventTimeTimer(long time);

// 删除触发时间为time的处理时间定时器
void deleteProcessingTimeTimer(long time);

// 删除触发时间为time的处理时间定时器
void deleteEventTimeTimer(long time);

TimerService会以键(key)和时间戳为标准,对定时器进行去重;也就是说对于每个key和时间戳,最多只有一个定时器,如果注册了多次,onTimer()方法也将只被调用一次

public class KeyedProcessTimerDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);


        SingleOutputStreamOperator<WaterSensor> sensorDS = env
                .socketTextStream("hadoop102", 7777)
                .map(new WaterSensorMapFunction())
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy
                                .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                                .withTimestampAssigner((element, ts) -> element.getTs() * 1000L)
                );


        KeyedStream<WaterSensor, String> sensorKS = sensorDS.keyBy(sensor -> sensor.getId());

        // TODO Process:keyed
        SingleOutputStreamOperator<String> process = sensorKS.process(
                new KeyedProcessFunction<String, WaterSensor, String>() {
                    /**
                     * 来一条数据调用一次
                     * @param value
                     * @param ctx
                     * @param out
                     * @throws Exception
                     */
                    @Override
                    public void processElement(WaterSensor value, Context ctx, Collector<String> out) throws Exception {
                        //获取当前数据的key
                        String currentKey = ctx.getCurrentKey();

                        // TODO 1.定时器注册
                        TimerService timerService = ctx.timerService();

                        // 1、事件时间的案例
                        Long currentEventTime = ctx.timestamp(); // 数据中提取出来的事件时间
                        timerService.registerEventTimeTimer(5000L);
                        System.out.println("当前key=" + currentKey + ",当前时间=" + currentEventTime + ",注册了一个5s的定时器");

                        // 2、处理时间的案例
//                        long currentTs = timerService.currentProcessingTime();
//                        timerService.registerProcessingTimeTimer(currentTs + 5000L);
//                        System.out.println("当前key=" + currentKey + ",当前时间=" + currentTs + ",注册了一个5s后的定时器");


                        // 3、获取 process的 当前watermark
//                        long currentWatermark = timerService.currentWatermark();
//                        System.out.println("当前数据=" + value + ",当前watermark=" + currentWatermark);


                        
                        // 注册定时器: 处理时间、事件时间
//                        timerService.registerProcessingTimeTimer();
//                        timerService.registerEventTimeTimer();
                        // 删除定时器: 处理时间、事件时间
//                        timerService.deleteEventTimeTimer();
//                        timerService.deleteProcessingTimeTimer();

                        // 获取当前时间进展: 处理时间-当前系统时间,  事件时间-当前watermark
//                        long currentTs = timerService.currentProcessingTime();
//                        long wm = timerService.currentWatermark();
                    }


                    /**
                     * TODO 2.时间进展到定时器注册的时间,调用该方法
                     * @param timestamp 当前时间进展,就是定时器被触发时的时间
                     * @param ctx       上下文
                     * @param out       采集器
                     * @throws Exception
                     */
                    @Override
                    public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
                        super.onTimer(timestamp, ctx, out);
                        String currentKey = ctx.getCurrentKey();

                        System.out.println("key=" + currentKey + "现在时间是" + timestamp + "定时器触发");
                    }
                }
        );

        process.print();

        env.execute();
    }
}

4、窗口处理函数

除了KeyedProcessFunction,另外一大类常用的处理函数,就是基于窗口的ProcessWindowFunction和ProcessAllWindowFunction了。

4.1 窗口函数使用

stream.keyBy( t -> t.f0 )
        .window( TumblingEventTimeWindows.of(Time.seconds(10)) )
        .process(new MyProcessWindowFunction())

4.2 ProcessWindowFunction解析

public abstract class ProcessWindowFunction<IN, OUT, KEY, W extends Window> extends AbstractRichFunction {
    ...

    public abstract void process(
            KEY key, Context context, Iterable<IN> elements, Collector<OUT> out) throws Exception;

    public void clear(Context context) throws Exception {}

    public abstract class Context implements java.io.Serializable {...}
}

ProcessWindowFunction依然是一个继承了AbstractRichFunction的抽象类,它有四个类型参数:

  • IN:input,数据流中窗口任务的输入数据类型。
  • OUT:output,窗口任务进行计算之后的输出数据类型。
  • KEY:数据中键key的类型。
  • W:窗口的类型,是Window的子类型。一般情况下我们定义时间窗口,W就是TimeWindow。

ProcessWindowFunction里面处理数据的核心方法.process()。方法包含四个参数。

  • key:窗口做统计计算基于的键,也就是之前keyBy用来分区的字段。
  • context:当前窗口进行计算的上下文,它的类型就是ProcessWindowFunction内部定义的抽象类Context。
  • elements:窗口收集到用来计算的所有数据,这是一个可迭代的集合类型。
  • out:用来发送数据输出计算结果的收集器,类型为Collector。

可以明显看出,这里的参数不再是一个输入数据,而是窗口中所有数据的集合。而上下文context所包含的内容也跟其他处理函数有所差别:

public abstract class Context implements java.io.Serializable {

    public abstract W window();

    public abstract long currentProcessingTime();
    public abstract long currentWatermark();

    public abstract KeyedStateStore windowState();
    public abstract KeyedStateStore globalState();
    public abstract <X> void output(OutputTag<X> outputTag, X value);

}

除了可以通过.output()方法定义侧输出流不变外,其他部分都有所变化。这里不再持有TimerService对象,只能通过currentProcessingTime()和currentWatermark()来获取当前时间,所以失去了设置定时器的功能;另外由于当前不是只处理一个数据,所以也不再提供.timestamp()方法。与此同时,也增加了一些获取其他信息的方法:比如可以通过.window()直接获取到当前的窗口对象,也可以通过.windowState()和.globalState()获取到当前自定义的窗口状态和全局状态。注意这里的“窗口状态”是自定义的,不包括窗口本身已经有的状态,针对当前key、当前窗口有效;而“全局状态”同样是自定义的状态,针对当前key的所有窗口有效。

所以我们会发现,ProcessWindowFunction中除了.process()方法外,并没有.onTimer()方法,而是多出了一个.clear()方法。从名字就可以看出,这主要是方便我们进行窗口的清理工作。如果我们自定义了窗口状态,那么必须在.clear()方法中进行显式地清除,避免内存溢出。

至于另一种窗口处理函数ProcessAllWindowFunction,它的用法非常类似。区别在于它基于的是AllWindowedStream,相当于对没有keyBy的数据流直接开窗并调用.process()方法:

stream.windowAll( TumblingEventTimeWindows.of(Time.seconds(10)) )
    .process(new MyProcessAllWindowFunction())

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1236652.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++ 多态和虚函数详解

本文章内容来源于C课堂上的听课笔记 多态基础 多态&#xff08;Polymorphism&#xff09;是面向对象编程中的一个重要概念&#xff0c;它允许使用统一的接口来表示不同的对象和操作。多态性有两种主要形式&#xff1a;静态多态性&#xff08;编译时多态性&#xff09;和动态多…

【设备树添加节点】

节点结束位置都需要加分号 of_iomap 完成映射 of_property_read_u32_array of_property_read_string of_fine_node_by_path

子虔科技出席2023WAIC“智能制造融合创新论坛”

7月7日&#xff0c;2023世界人工智能大会&#xff08;WAIC&#xff09;闵行会场在大零号湾举办。子虔科技联合创始人周洋作为专家嘉宾受邀参与智能制造融合创新论坛大会。会上探讨了工业和制造业数字化转型的机遇、挑战和对策。其中&#xff0c;周洋提到&#xff0c;工业制造业…

【电路笔记】-电源电压

电源电压 文章目录 电源电压1、概述1.1 交流发电机1.2 电池1.3 理想电压源1.4 实际电压源1.5 连接规则 2、相关源2.1 压控电压源 (VCVS)2.2 电流控制电压源 (CCVS) 3、总结 在本文中&#xff0c;我们详细介绍了称为电源电压的重要电子元件的架构、功能和使用。 我们首先提出理想…

leetcode刷题详解——粉刷房子

1. 题目链接&#xff1a;LCR 091. 粉刷房子 2. 题目描述&#xff1a; 假如有一排房子&#xff0c;共 n 个&#xff0c;每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种&#xff0c;你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。 当然&#xff0c;因为…

https和http的区别和优势

大家好&#xff0c;我是咕噜-凯撒&#xff0c;HTTP&#xff08;超文本传输协议&#xff09;和HTTPS&#xff08;安全超文本传输协议&#xff09;是用于在网络上传输数据的协议&#xff0c;HTTPS相比HTTP在数据传输过程中更加安全可靠&#xff0c;适合对数据安全性要求较高的场景…

力扣第463题 岛屿的周长 C++ 深度优先搜索 + 思维判断的边界

题目 463. 岛屿的周长 简单 相关标签 深度优先搜索 广度优先搜索 数组 矩阵 给定一个 row x col 的二维网格地图 grid &#xff0c;其中&#xff1a;grid[i][j] 1 表示陆地&#xff0c; grid[i][j] 0 表示水域。 网格中的格子 水平和垂直 方向相连&#xff08;对角线…

Altium Designer学习笔记6

原理图库的制作&#xff0c;SMA元件的制作&#xff1a; 图形不是很重要&#xff0c;重要的是管脚的功能。 Design Item ID和Designator两个值是要注意的。 进行Place放置&#xff0c;切换到原理图工作区&#xff0c;测试下功能。 AD9851元件库制作&#xff1a; 不需要再新建原…

在银行外包如何自我提升

作者&#xff1a;苍何&#xff0c;前大厂高级 Java 工程师&#xff0c;阿里云专家博主&#xff0c;CSDN 2023 年 实力新星&#xff0c;土木转码&#xff0c;现任部门技术 leader&#xff0c;专注于互联网技术分享&#xff0c;职场经验分享。 &#x1f525;热门文章推荐&#xf…

Linux调度域与调度组

引入调度域的讨论可以参考这篇文章。这篇笔记重点分析了内核调度域相关的数据结构以及内核用于构建调度域的代码实现&#xff0c;以此来加深对调度域的理解。调度域是调度器进行负载均衡的基础。 调度域拓扑层级 整个系统的调度域组成一个层级结构&#xff0c;内核设计了stru…

解决VSCode运行时自动保存问题【图文解析】

用VSCode写前端时老是自动保存&#xff0c;代码还没写完就开始 刷新页面 调用接口 出现报错之类的&#xff0c;很烦人&#xff0c;所以就写一篇修改VSCode自动保存文件的文章&#xff0c;以免自己忘记在哪设置。 同事总是用不自动保存&#xff0c;每次写完都要ctrls一下&#x…

求二叉树的最大密度(可运行)

最大密度&#xff1a;二叉树节点数值的最大值 如果没有输出结果&#xff0c;一定是建树错误&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 我设置输入的是字符型数据&#xff0c;比较的ASCII值。 输入&#xff1a;FBE###CE### 输…

ubuntu安装nvm

需求 在 virtualbox 虚拟机上运行的 ubuntu &#xff08;22.04.3&#xff09;里安装 nvm &#xff08;Node Version Manager&#xff09; 简述 官网文档 &#xff08;github地址&#xff09;上有提到两种安装方式&#xff0c;一种是直接 curl | wget 命令安装&#xff0c;一…

【C++】泛型编程 ⑪ ( 类模板的运算符重载 - 函数实现 写在类外部的不同的 .h 头文件和 .cpp 代码中 )

文章目录 一、类模板的运算符重载 - 函数实现 写在类外部的不同的 .h 头文件和 .cpp 代码中1、分离代码 后的 友元函数报错信息 - 错误示例Student.h 头文件内容Student.cpp 代码文件内容Test.cpp 代码文件内容执行报错信息 2、问题分析 二、代码示例 - 函数实现 写在类外部的不…

Linux安装ErLang(亲测可用)

注&#xff08;我这里安装完成后显示的是中文&#xff0c;有的是显示的英文&#xff09; 1.下载er wget https://packages.erlang-solutions.com/erlang-solutions-1.0-1.noarch.rpm2.安装er yum -y install epel-release截图截不全&#xff0c;就只截安装完成的部分了 rp…

USART的标准库编程

使用USART与计算机通信 电脑上只有usb端口 没有TX 和RX需要一个USB转TTL电平模块来实现通信 芯片C8T6中只有三个UASRT 选其中一个UASRT来通信即可 那么如何定位那个USART的TX 和RX引脚呢&#xff1f; 方式1 查找最小系统板引脚分布图 查找USART1的引脚 RTS CTS是硬件流控 CK…

科技赋能,创新发展!英码科技受邀参加2023中国创新创业成果交易会

11月17日至19日&#xff0c;2023中国创新创业成果交易会&#xff08;简称&#xff1a;创交会&#xff09;在广州市广交会展馆圆满举行。英码科技受邀参加本届创交会&#xff0c;并在会场展示了创新性的AIoT产品、深元AI引擎和行业热门解决方案。 据介绍&#xff0c;本届创交会由…

RT-Thread Hoist_Motor PID

本节介绍的是一个举升电机&#xff0c;顾名思义&#xff0c;通过转轴控制物体升降&#xff0c;为双通道磁性译码器&#xff0c;利用电调进行操控&#xff0c;具体驱动类似于大学期间最大众的SG180舵机&#xff0c;在一定的频率下&#xff0c;通过调制脉宽进行控制。 设备介绍…

V100 GPU服务器安装CUDNN教程

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

Startdrive中上传参数设置的具体方法和注意事项

Startdrive中上传参数设置的具体方法和注意事项 适用于配 SINAMICS S120、G130、G150、S150和MV(基于CU3x0-2的驱动器)和所有启动驱动器版本INAMICS G115D/G120/G120D/G120C/G120P/G110M(基于CU2x0-2的驱动器) 根据SINAMICS类型的不同,Startdrive中的Upload参数有所不同。…