智能座舱架构与芯片- (4) 硬件篇 中

news2024/9/25 23:25:16

2.4 高速视频传输(GMSL)

为了解决未来汽车系统所面临的问题,美信(Maxim)推出了全新下一代GMSL技术,即吉比特多媒体串行链路(GMSL)串行器和解串器,用来支持未来ADAS和信息娱乐系统要求的宽带、互联复杂度和数据完整性的要求。

GMSL技术可以支持4K的数据传输流,采用同轴电缆双绞线介质时,支持长达15米的传输距离,该产品满足业界最为严苛的EMC。支持视频的汇聚与分割,同时还集成了诊断功能,可以实时监测链路传输性能

美信的GMSL可以支持如下多种用法:

  1. 支持Video和以太网:

图片来源:Maxim

通过GMSL技术,可以整合高清视频高速以太网数据传输,简化了车内的布局布线,使系统设计更为简单。

2. 支持多路Video:

图片来源:Maxim

针对多传感器融合,由于具备视频切割功能,所以可以使用一个串行器整合多路视频数据,然后分别送入不同的显示器。

3. 支持Camera 4通道聚合

图片来源:Maxim

在环视系统中,由于具有视频汇聚功能,通过GMSL四通道解串器,可以同时支持四个摄像头的传输,大大节约系统布线的困扰以及FPGA的设计成本。

串行器和解串器IC均内置扩频功能,以改善链路的电磁兼容(EMI)性,无需外部扩频时钟。串行器和解串器系列产品的互操作性允许链路两侧使用不同接口。除驱动高分辨率中央/后排显示屏和仪表盘外,GMSL SerDes也能胜任百万像素级摄像系统设计。

与FPD-Link类似,GMSL同样支持前向高速数据传输反向低速控制信号传输等功能。因此在车载高速音视频传输接口中,通常都会选择FPD-Link或者GMSL互为供应链备份。

2.5 高速视频传输(MIPI A-Phy)

MIPI A-phy是MIPI联盟制定的,用于汽车行业的串行解串器规范。2015年中期,MIPI联盟确定了对统一的车载连接规范的需求,该规范可以满足汽车行业对高带宽,低时延,重量轻,功耗低的需求。到2020年6月,MIPI联盟宣布已经完成MIPI A-Phy V1.0的开发,这是一个用于汽车应用长距离SerDes物理层接口

MIPI联盟制定的其他规范,例如C-Phy,D-Phy,M-Phy,已经在消费电子类领域广泛应用;但这几个规范都只能在短距离应用,最多传输15cm。而A-Phy的设计则是为了满足跨越整个车辆距离的高速数据传输。它最大传输距离能达到15米;通过使用STP线缆,增加传输通道,A-Phy的传输速率可以超过16Gbps,甚至达到48Gbps;

采用A-Phy可以直接承载MIPI的CSI-2(用于Camera)和DSI-2(用于Display)协议,它可以分2步进行应用。

1.采用A-Phy技术设计桥接芯片,类似于FPD-Link或者GMSL,可以为客户提供额外的其他选择。

2.直接在Camera,Display显示屏,以及SOC主芯片内部集成A-Phy,消除桥接芯片。

上图说明了配备A-phy的Camera和配备A-phy的ECU或汽车芯片之间最简单的直接连接。消除每个端点的桥接芯片将降低成本,电缆重量,功耗和等待时间,并提高可靠性。

可以看到,A-phy不是直接跨越式的替换现有的方案,而是通过兼容性的替代现有的SerDes桥接芯片,最后实现完全不用桥接芯片的最终方案。这样的好处是平稳过渡,有利于A-phy的接受和推广。

A-phy的关键技术优势包括:

  • 非对称优化架构。A-PHY从头开始设计,用于从摄像机/传感器到ECU以及ECU到显示器的高速非对称传输,同时为命令和控制提供并发的低速双向通信。与其他/对称架构相比,优化的非对称架构可简化设计并降低成本。
  • 简化系统集成并降低成本:对使用MIPI CSI-2和DSI-2的设备的原生支持,最终消除了对桥接IC的需求
  • 远距离:15米连接距离;
  • 高性能:5档速度(2,4,8 和16Gbps),未来48Gbps甚至更高;
  • 端到端的功能安全:APHY+CSI2/DSI2可以支持ASILB~ASILD的功能安全
  • 高可靠性:超低的误码率PER,10^-19,可在车辆使用寿命内提供空前的性能
  • 移动协议重用。在数十亿智能手机和物联网设备中成功部署后,MIPI协议已被充分证明可直接用于汽车。
  • 纯硬件协议层。就像在使用D-PHY / C-PHY分层的移动应用程序中一样,A-PHY与CSI-2 / DSI-2协议层紧密耦合,因此基本上在仅具有硬件的协议层下运行,而无需软件干预。该体系结构与其他接口相比,后者具有更高的灵活性,并利用软件层来实现这种灵活性。
  • 针对布线,成本和重量的优化架构。由于A-PHY的优化的非对称架构和硬件协议分层,A-PHY的实现可以满足优化的布线,成本和重量要求。随着电子组件及其接口电缆的数量在实现自主的道路上增加,这一点变得越来越重要。
  • 其他协议的灵活链路层支持。MIPI Alliance希望与其他将其本机协议应用于汽车的组织合作。这包括VESA,它正在调整其DisplayPort协议规范以供汽车使用。为了适应这些不断发展的规范,A-PHY包括一个通用数据链路层,该层可容纳不同的协议适应层,并计划支持VESA的车载DisplayPort协议
  • 高EMC抗扰性。MIPI已投入大量资金来分析和测量恶劣的汽车通道,并得出结论,基于窄带干扰消除器(NBIC)和重传方案(RTS)的体系结构可提供最强大的性能,特别是对于需要更长数据速率的应用距离。

A-phy 协议

2.6 高速视频传输(ASA)

ASA(Automotive Serdes Alliance)是汽车Serdes联盟的简称。它是由包括70多家公司联合组建的,成立于2019年5月。它的创始公司包括BMW,Continental,Broadcom and NXP等。在2020年12月,ASA发布了1.0 Spec。它是一个针对汽车内部非对称连接(例如,Camera,Display,Sensor等) 的串行-解串通信技术,称为ASA Motion Link。它的特性包括如下:

  • Downlink line rates up to 16Gbps (up to 64Gbps under development)
  • Uplink rates greater than 100Mbps
  • Up to 15m Coaxial and 10m SDP channels
  • Includes Application Stream Encapsulation Protocol (ASEPs) for Video, I2C, Ethernet L2 (GPIO, I2S, embedded DP, SPI, HDI under development)

ASA的roadmap:

  1. Gen1:支持Camera和Sensor的连接:采用ASA Serdes承载CSI

2. Gen2:支持Display的连接:采用ASA Serdes承载eDP或者HDMI

三、USB

USB是汽车座舱内部通用的数据连接通道。在座舱内方便的地方设置USB 接口,可以方便驾驶员,车内乘客进行充电,连接手机,U盘,卡拉OK等应用。

使用USB插口,首先要考虑数据带宽,其次要考虑插口类型,最后要考虑是否符合车规标准要求。

3.1 带宽

USB-IF组织发布了全新的USB4 v2.0规范,带来了新一代的USB 80Gbps接口,还有全新的命名体系。

首先说回到UBS4 2.0或者说USB 80Gbps,其最主要的变化在于带宽再次翻番来到了80Gbps,这得益于新的基于PAM3信号编码机制的物理层架构,同时还有新定义的80Gbps有源数据线。在特定应用场景中,比如8K超高清显示,USB 80Gbps还可以配置为非对称编码异步传输模式,一个方向可以高达120Gbps,从而足够承载DP 2.0/2.1 UHBR20信号,另一个方向则是40Gbps。

同时USB 80Gbps升级了数据和显示协议,可以更好地利用带宽,其中数据传输支持20Gbps的高带宽,显示传输则和DP 2.0、PCIe 4.0相互打通,共享PHY物理层,从而一个接口搞定高速数据、显示。当然了,USB 80Gbps依然保持向下兼容,而且只有USB Type-C一种接口形式。

在接口的命名规则方面,USB接口将统一以传输带宽命名,USB4 v2.0对应USB 80Gbps,USB4对应USB 40Gbps,USB 3.2 Gen2x2对应20Gbps,USB 3.2 Gen2对应USB 10Gbps,USB 3.2 Gen1对应USB 5Gbps……更古老的USB 2.0、USB 1.0保持不变,因为它们的速度太慢了,还停留在Mbps数量级。如果改叫USB 480Mbps,不但麻烦还容易引起误会。

3.2 接口

USB Type-C是一种USB接口外形标准,拥有比Type-A及Type-B均小的体积,既可以应用于PC(主设备)又可以应用于外部设备(从设备,如手机)的接口类型 。USB Type-C有4对TX/RX分线,2对USBD+/D-,一对SBU,2个CC,另外还有4个VBUS和4个地线。

  • 4* Tx/Rx :一共4对高速信号差分线。可以传输4-lane DP信号,或者4-lane的USB 10Gbps信号;USB10Gbps信号只需要2对差分信号线(Tx+/Tx- and Rx+/Rx-) 即可传输;其他2对差分信号线是为了支持正反插而设计的。
  • 2*D+/D-:2对USB D+/D-信号线。可以用来连接USB2.0,或者USB1.0,支持正反插。当选择使用DP+USB2.0模式时,可以支持ARVR;
  • 2*CC:用于Power Delivery模块(简称PD)的通讯。CC线首先用来判断设备插入的方向,正插(CC1)或者反插(CC2)。
  • 2*SBU:其他辅助用途。例如,在用于DP模式时,SBU作为DP协议中的AUX_P/AUX_N差分线,负责传输设备的DPCD,EDID等信息。
  • 4*VBus and4*GND:用于供电。VBus提供默认的5V@500mA供电能力。但是如果需要进行快充,则额外的USB电力传输需要使用特殊的供电模块。

3.3 供电

2021年5月25日,USB-IF协会推出了USB PD3.1最新快充标准规范,其中更新了有关供电能力的章节。USB PD3.1规范将原来的USB PD3.0内容归到标准功率范围(Standard Power Range,简称SPR)里面,最大功率保持100W不变;同时增加了扩展功率范围(Extended Power Range,简称EPR),最大功率由100W扩展到240W。

从具体的实现案例来看,目前的PD芯片可以支持单口或者双口供电,并且可以实现双口动态功率调节。也就是说,假设总功率为100W,每个VBus可以分配为65W/35W。

当需要达到100W的充电功率时,一般电压会为20V,电流达到5A。15W的充电功率,电压为5V,电流为3A。

3.4 DP ALT Mode

DP ALT mode 允许通过一根电缆,使用标准的Type-C接口,承载USB2.0, USB 10Gbps, DP, VBus等信号,如下图所示应用实例:

Type-C的管脚定义如下:

在USB-IF组织发布的USB/DP ALT mode V1.0规范中,采用同一个Type-C接口,可以承载如下的信号组合:

  • USB 10Gbps 4lane (正反插) + USB2.0+VBus:这就是USB 10Gbps的常规连接方式;

  • DP 4Lane+USB2.0+VBus:这时,高速的4对lane全部给DP使用,同时支持USB2.0和供电,Aux_CH用于DP交互和信号传输质量的协商,CC用于检测识别插入:

  • DP 2Lane+USB3 2Lane+USB2.0+VBus:这时,2对高速差分线给DP使用,2对给USB 10Gbps使用,同时还支持USB2.0和VBus供电。

  • Virtual Link(非标准模式):这种模式非USB-IF组织定义的DP ALT mode 范畴,是部分公司定义的私有协议,可用于VR应用。在这种模式下,4对高速差分线全部给DP使用,2对 USB D+/D-将被用于USB 10Gbps,当作Tx+/Tx- 和 Rx+/Rx-来使用。

  • 如何触发DP ALT Mode

Type-C Alt Mode 大致配置流程如下:

  1. USB 连接 通过CC侦测到;
  2. VBUS 引脚 提供默认电源配置 5V@500mA;
  3. VBUS 所需的额外USB电力传输可以进行协商,Battery Charge 1.2(BC 1.2)或USB PD 都可以选择;
  4. 使用 结构化 供应商定义报文(VDM) 需要USB PD 来发送来协商 Alt Mode 握手;
  5. USB 枚举;
  6. 如果 DP Alt Mode 协商已经完成,继续进行DP link training来建立DP连接;
  7. USB和DP通道准备就绪进行Type-C 数据和视频信号传输;

3.5 车规

在智能座舱环境下,USB Type-C接口和线缆还需要满足车规的标准。这里车规的含义,包括环境温度和接插件的稳固程度。除了暴露给用户可见的Type-C接口与消费类电子相似之外,其他与车内零部件连接的接插件和线缆都要满足车规的标准,以应对恶劣的车内环境,以及更长的使用周期限制。

一般来说,车内使用的USB接口与线缆,需要考虑如下几个因素:

  1. 传输距离:通常来说,USB 10Gbps信号线传输长度在1米到5米之间。如果超过2米,一般都要在Sink端增加Redriver芯片,否则信号眼图将会闭合,无法传输;
  2. 工作温度:接插件和线缆的工作温度要满足AEC-Q100 Grade2的标准,也就是达到-40°~+105°;
  3. 电磁屏蔽:由于车内电磁屏蔽的要求,线缆需要带屏蔽层才能保证较好的EMC电磁兼容性;
  4. 稳固程度:由于汽车运行环境存在颠簸,所以一般消费级的连接器无法应用在车内,需要考虑专用的接插器件,保证连接的稳固;

3.6 Redriver

中继器,有一个接收器和一个发射器,在接收器端,它通过它的均衡器(EQ)扮演着一个信号调节的角色。本质上讲,接收器为输入频道损耗提供补偿,如果不这么做,会导致额外的时钟抖动。经过均衡后的信号便会被发射器中继。发射器同样可以选择去加重(DE)或者预加重(PE),DE 是信号低频分量的衰减,而PE 则是高频分量的增强。这两个技术都可以预补偿中继器发射端的输出信号损耗。

当信号经过被动式的媒介比如PCB走线时,它会线性衰减。无论线路输入端信号幅度如何,PCB线路都会使它衰减一定比率。一个完善的中继器应当恰恰相反,无论其输入端的幅值如何,将信号放大一定比率。这样的中继器便是线性中继器,他的作用就是移除PCB走线的影响。

未完待续...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1236421.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

图Graph的存储、图的广度优先搜索和深度优先搜索(待更新)

目录 一、图的两种存储方式 1.邻接矩阵 2.邻接表 生活中处处有图Graph的影子,例如交通图,地图,电路图等,形象的表示点与点之间的联系。 首先简单介绍一下图的概念和类型: 图的的定义:图是由一组顶点和一…

webpack 配置

1、基础配置 // node js核心模塊 const path require(path) // 插件是需要引入使用的 const ESLintPlugin require(eslint-webpack-plugin) // 自动生成index.html const HtmlWebpackPlugin require(html-webpack-plugin); // 将css文件单独打包,在index.html中…

Windows系统如何安装与使用TortoiseSVN客户端,并实现在公网访问本地SVN服务器

文章目录 前言1. TortoiseSVN 客户端下载安装2. 创建检出文件夹3. 创建与提交文件4. 公网访问测试 前言 TortoiseSVN是一个开源的版本控制系统,它与Apache Subversion(SVN)集成在一起,提供了一个用户友好的界面,方便用…

计算机基础知识56

choices参数的使用 # 应用场景: 学历:小学、初中、高中、本科、硕士、博士、1 2 3 4 5 6 客户来源: 微信渠道、广告、介绍、QQ、等等 性别:男、女、未知 # 对于以上可能被我们列举完的字段我们一般都是选择使用…

【JavaEE】Spring的创建和使用(保姆级手把手图解)

一、创建一个Spring项目 1.1 创建一个Maven项目 1.2 添加 Spring 框架支持 在pom.xml中添加 <dependencies><dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><version>5.2.3.RELEASE&…

智能座舱架构与芯片- (15) 测试篇 下

三、持续集成与交付 3.1 自动化编译框架 在智能座舱软件中&#xff0c;分为上层应用软件和底层软件。有些上层应用软件是与指令集平台无关的&#xff0c;例如Java应用程序等&#xff0c;它们对所运行的CPU平台没有依赖性&#xff0c;可以很好的适配当前平台进行执行。而在底层…

IDEA JRebel安装使用教程

1、下载插件 版本列表&#xff1a;https://plugins.jetbrains.com/plugin/4441-jrebel-and-xrebel/versions 下载&#xff1a;JRebel and XRebel 2022.4.1 这里下载2022.4.1版本&#xff0c;因为后续新版本获取凭证会比较麻烦。下载完成会是一个压缩包。 2、安装 选择第一步…

机器学习笔记 - 创建CNN + RNN + CTC损失的模型来识别图像中的文本

我们将创建一个具有CTC损失的卷积循环神经网络来实现我们的OCR识别模型。 一、数据集 我们将使用 Visual Geometry Group 提供的数据。 Visual Geometry Group - University of OxfordComputer Vision group from the University of Oxfordhttps://www.robots.ox.ac.uk/~vgg/d…

离散数学考前小记

数理逻辑 求前束范式的一般步骤&#xff1a; 利用等值公式消去“ → \rightarrow →”和“ ↔ \leftrightarrow ↔”否定深入改名前移量词 仅含有全称量词的前束范式称为SKOLEM标准形。 SKOLEM标准形的求解算法&#xff1a; 先求谓词演算公式的前束范式使用n元函数干掉存在…

Keil MDK 安装

0 Preface/Foreword 1 下载和安装 官网&#xff1a;Keil Embedded Development Tools for Arm, Cortex-M, Cortex-R4, 8051, C166, and 251 processor families. Keil MDK 下载链接&#xff1a;Keil MDK 1.1 下载 根据需求下载对应的Keil MDK edition。 不同的editions包括 …

洛谷 P3252 [JLOI2012] 树

读题就读趋势了&#xff0c;还以为是每个深度都可以选一个&#xff0c;然后深度升序就可以了&#xff0c;以为是个按深度的01背包。 但是前面还说了是一条路径&#xff0c;路径是不能断开的。那就从每个点开始爆搜一次就好了。 看了一下范围n<1e5&#xff0c;n^2爆搜理论上…

【计算机网络笔记】路由算法之距离向量路由算法

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

从0开始学习JavaScript--JavaScript类型化数组进阶

前面的文章&#xff0c;已经介绍了JavaScript类型化数组的基本概念、常见类型和基本操作。在本文中&#xff0c;我们将深入探讨类型化数组的一些进阶特性&#xff0c;包括共享内存、大端小端字节序、以及类型化数组与普通数组之间的转换&#xff0c;通过更丰富的示例代码&#…

4D毫米波雷达和3D雷达、激光雷达全面对比

众所周知&#xff0c;传统3D毫米波雷达存在如下性能缺陷&#xff1a; 1&#xff09;静止目标和地物杂波混在一起&#xff0c;难以区分&#xff1b; 2) 横穿车辆和行人多普勒为零或很低&#xff0c;难以检测&#xff1b; 3) 高处物体和地面目标不能区分&#xff0c;容易造成误刹…

chromium114添加新的语言国际化支持

一、需求说明 需要chromium114支持新语言体系,例如藏语,蒙古语,苗语等 二、操作步骤 1. build/config/locales.gni修改 在all_chrome_locales变量中添加新的语种标识,如下图。 2. 添加编译文件,告诉浏览器在编译时需要加载和输出那些文件 尝试编译出现错误一提示。需要…

读像火箭科学家一样思考笔记05_思想实验

1. 思想实验室 1.1. 思想实验至少可以追溯到古希腊时期 1.1.1. 从那时起&#xff0c;它们就跨越各个学科&#xff0c;在哲学、物理学、生物学、经济学等领域取得重大突破 1.1.2. 它们为火箭提供动力&#xff0c;推翻政府&#xff0c;发展进化生物学&#xff0c;解开宇宙的奥…

十七、SpringAMQP

目录 一、SpringAMQP的介绍&#xff1a; 二、利用SpringAMQP实现HelloWorld中的基础消息队列功能 1、因为publisher和consumer服务都需要amqp依赖&#xff0c;因此这里把依赖直接放到父工程mq-demo中 2、编写yml文件 3、编写测试类&#xff0c;并进行测试 三、在consumer…

c++|内联函数

一、概念 以inline修饰的函数叫做内联函数&#xff0c;编译时c编译器会在调用函数的地方展开&#xff0c;而不会建立栈帧&#xff0c;提升了程序运行的效率 例子&#xff1a; #include <iostream> using namespace std;int Add(int left, int right) {return left - ri…

【qsort学习及改造冒泡排序能排序任何数】

qsort学习及改造冒泡排序能排序任何数 qsort的使用 qsort的使用 这个函数也不是很复杂&#xff01;&#xff01;&#xff01; qsort(void*base,size_t num,size_t width,int(int (__cdecl *compare )(const void *elem1, const void *elem2 )))  void * base,为数组的基地…

人工智能:科技之光,生活之美

在科技飞速发展的今天&#xff0c;人工智能已经深入到我们的生活中&#xff0c;它如同一束璀璨的科技之光&#xff0c;照亮我们生活的每一个角落&#xff0c;使我们的生活更加美好。下面我将从人工智能的领域、应用以及对人工智能的看法三个方面来谈谈它对我们生活的影响。 一、…