2021秋招-总目录

news2025/1/12 18:04:51

2021秋招-目录

知识点总结

  1. 预训练语言模型: Bert家族
    1.1 BERT、attention、transformer理解部分
  1. B站讲解–强烈推荐
  2. 可视化
  3. 推倒
  4. 结合代码理解
  5. 代码部分
  6. 常见面试考点以及问题:
  1. word2vec 、 fasttext 、elmo;
  2. BN 、LN、CN、WN
  3. NLP中的loss与评价总结
    4.1 loss_function:
  1. 深度学习-Loss函数
  1. L1、L2正则化总结: L1,L2正则所有问题-视频-PPT截图⭐⭐⭐⭐
    5.1 知乎-L1正则化与L2正则化⭐⭐⭐
    5.2 贝叶斯眼里的正则化⭐⭐
    5.1 L1正则化与L2正则化
    5.2 深入理解L1、L2正则化
    5.3 L1和L2正则化的概率解释🎃
    5.4 机器学习中的范数规则化之(一)L0、L1与L2范数
    5.5 L1正则化和L2正则化的详细直观解释
    5.6 机器学习——正则化不理解的地方
  2. 过拟合、欠拟合 原因、现象、解决办法。
    6.1 深度学习中的过拟合问题和解决办法(转载)
    6.2

面经

刷题

深度学习汇总

0. 数学公式整理

机器学习之常用矩阵/向量运算-待整理

  1. 矩阵乘法
  2. Hadamard product
  3. 向量点积
  4. 向量叉积
  5. CNN中点积求和
  6. 矩阵乘法中: 可以看作 向量点积;

(转载)数学-矩阵计算 矩阵和向量的求导法则-待整理

1. 前馈网络、反向传播公式推导

反向传播算法(过程及公式推导)⭐⭐⭐
反向传播算法—从四个基本公式说起

  • 神经元结构神经网络入门——神经元算法
    在这里插入图片描述
  • 神经元/数据/参数 计算; 神经元指的一个结构。
    在这里插入图片描述
    在这里插入图片描述

2. SGD推倒

3. 优化器总结

4. 激活函数总结

5. pooling、dropout、

6. 参数 &超参数、batch_size、学习率

6.损失函数专题

7.过拟合、欠拟合

8.BN、LN

8.1 Internal Covariate Shift

  • 如何理解 Internal Covariate Shift?

​ 深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新。为了训好模型,我们需要非常谨慎地去设定学习率、初始化权重、以及尽可能细致的参数更新策略。

​ Google 将这一现象总结为 Internal Covariate Shift,简称 ICS。 什么是 ICS 呢?

​ 大家都知道在统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的”。如果不一致,那么就出现了新的机器学习问题,如 transfer learning / domain adaptation 等。而 covariate shift 就是分布不一致假设之下的一个分支问题,它是指源空间和目标空间的条件概率是一致的,但是其边缘概率不同

​ 大家细想便会发现,的确,对于神经网络的各层输出,由于它们经过了层内操作作用,其分布显然与各层对应的输入信号分布不同,而且差异会随着网络深度增大而增大,可是它们所能“指示”的样本标记(label)仍然是不变的,这便符合了covariate shift的定义。由于是对层间信号的分析,也即是“internal”的来由。

那么ICS会导致什么问题?

简而言之,每个神经元的输入数据不再是“独立同分布”。

其一,上层参数需要不断适应新的输入数据分布,降低学习速度。

其二,下层输入的变化可能趋向于变大或者变小,导致上层落入饱和区,使得学习过早停止。

其三,每层的更新都会影响到其它层,因此每层的参数更新策略需要尽可能的谨慎。

参考文献

9.CNN

10.RNN

11.Attention-Transformer

12.BERT

13.BERT~ALBert ~ 。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1235980.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI大发展:人机交互、智能生活全解析

目录 ​编辑 人工智能对我们的生活影响有多大 人工智能的应用领域 一、机器学习与深度学习 二、计算机视觉 三、自然语言处理 四、机器人技术 五、智能推荐系统 六、智能城市和智能家居 ​编辑 自己对人工智能的应用 自己的人工智能看法:以ChatGPT为例 …

el-table 表格表头、单元格、滚动条样式修改

.2023.11.21今天我学习了如何对el-table表格样式进行修改&#xff0c;如图&#xff1a; 运用的两个样式主要是 1.header-cell-class-name&#xff08;设置表头&#xff09; 2.class-name&#xff08;设置行单元格&#xff09; 代码如下&#xff1a; <el-table :data&quo…

人工智能基础_机器学习045_逻辑回归的梯度下降公式推导_更新公式---人工智能工作笔记0085

然后我们上面有了逻辑回归的损失函数,以后,我们再来看 逻辑回归的梯度下降公式 可以看到上面是逻辑回归的梯度下降公式,这里的阿尔法是学习率,这里的 后面的部分是梯度也就是步长,这个阿尔法是,通过调节这个来控制梯度下降的快和慢对吧 然后我们再来看逻辑回归 可以看到这里…

万字解析设计模式之 适配器模式

一、 适配器模式 1.1概述 将一个接口转换成客户希望的另一个接口&#xff0c;适配器模式使接口不兼容的那些类可以一起工作。 适配器模式分为类适配器模式和对象适配器模式&#xff0c;前者类之间的耦合度比后者高&#xff0c;且要求程序员了解现有组件库中的相关组件的内部结…

【ArcGIS Pro二次开发】(77):ArcGIS Pro中图层的获取与解析

一、最简单的获取图层方式 通常情况下&#xff0c;如果要获取当前地图中的图层&#xff0c;可以用2种方法获取。 以下图为例&#xff1a; 一种是【map.Layers】属性获取&#xff0c;结果如下&#xff1a; 可以看出&#xff0c;这里只获取到了第一层级的图层&#xff0c;图层组…

创新无界:通义灵码在测试过程中展现的独特魅力

通义灵码基于通义大模型&#xff0c;提供代码智能生成、研发智能问答能力。本文就来介绍下通义灵码在测试过程中的应用。 操作手册&#xff1a; 通义灵码, 阿里云提供的一款基于通义大模型的智能编码辅助工具_云效-阿里云帮助中心 1. 什么是通义灵码 是阿里云出品的一款基于通…

数据结构与算法实验(黑龙江大学)

实验一 顺序存储的线性表&#xff08;2 学时&#xff09; 一、实验目的 1 、掌握线性表的逻辑结构特征。 2、熟练掌握线性表的顺序存储结构的描述方法。 3 、熟练掌握顺序表上各种基本操作的实现。 二、实验内容 1 、设线性表的数据元素都为整数&#xff0c;存放在顺序表…

C++使用Tensorflow2.6训练好的模型进行预测

要在C语言中调用训练好的TensorFlow模型,需要使用TensorFlow C API。 https://tensorflow.google.cn/install/lang_c?hl=zh-cnten TensorFlow 提供了一个 C API,该 API 可用于为其他语言构建绑定。该 API 在 c_api.h 中定义,旨在实现简洁性和一致性,而不是便利性。 下载…

深度学习卫星遥感图像检测与识别 -opencv python 目标检测 计算机竞赛

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐…

UE5的TimeLine的理解

一直以来&#xff0c;我对动画的理解一直是这样的&#xff1a; 所谓动画&#xff0c;就是可导致可视化内容变化的参数和时间的对应关系。 我不能说这个观点现在过时了&#xff0c;只能说自己狭隘了。因为UE的TimeLine的设计理念真让人竖大拇指。 当我第一次看到TimeLine节点的…

SAP 调取http的x-www-form-urlencoded形式的接口

一、了解下x-www-form-urlencoded形式对于SAP来说有啥区别 简单来说&#xff0c; 1.raw格式就是标准的json格式&#xff1a;{“Name”:“John Smith”&#xff0c;“Age”: 23} 2.x-www格式是要转化一下的&#xff1a;NameJohnSmith&Age23 字段与字段相互连接要用 & 符…

直播间弹幕直播游戏开发教程

随着直播技术的不断发展&#xff0c;交互式弹幕直播游戏成为吸引用户参与的新兴方式。这种游戏融合了实时弹幕互动和直播视频&#xff0c;为观众和主播提供了更加丰富的互动体验。在这篇文章中&#xff0c;我们将探讨从概念到实现的步骤&#xff0c;帮助你打造一款引人入胜的交…

MidJourney笔记(2)-面板使用

MidJourney界面介绍 接着上面的疑问。U1、U2、U3、U4、V1、V2、V3、V4分别代表着什么? U1、U2、U3、U4: U按钮是用于放大图片,数字即表示对应的图片,可以立即生成1024X1024像素大小的图片。这样大家在使用的时候,也方便单独下载。 其中数字顺序如下:

从零开始的搭建指南:开发高效的抖音预约服务小程序

预约服务小程序提高了效率&#xff0c;节省了用户时间。下文&#xff0c;小编将与大家一同探讨如何从零开始打造预约服务小程序。 第一步&#xff1a;明确需求和目标 确定你的小程序主要服务领域是什么&#xff1f;是医疗预约、美容美发、餐厅预订还是其他行业&#xff1f;明…

最新版本的橙色前端微信去水印小程序源码

好像最近去水印小程序挺火的&#xff0c;你看这就不来了一个新的去水印小程序。 橙色前端是最近比较流行的&#xff0c;很多小程序也都是这种样式&#xff0c;如果你需要其它颜色的&#xff0c;可以自己修改一下CSS即可&#xff0c;小程序云开发的&#xff0c;无需服务器。 打…

时序预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 x 基本介绍 1.Matlab实现LSTM-Adaboost时间序列预测…

气相色谱质谱仪样品传输装置中电动针阀和微泄漏阀的解决方案

标题 摘要&#xff1a;针对目前国内外各种质谱仪压差法进样装置无法准确控制进气流量&#xff0c;且无相应配套产品的问题&#xff0c;本文提出了相应的解决方案和配套部件。解决方案主要解决了制作更小流量毛细管和毛细管进气端真空压力精密控制问题&#xff0c;微流量毛细管的…

电子学会C/C++编程等级考试2022年09月(一级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:指定顺序输出 依次输入3个整数a、b、c,将他们以c、a、b的顺序输出。 时间限制:1000 内存限制:65536输入 一行3个整数a、b、c,以空格分隔。 0 < a,b,c < 108输出 一行3个整数c、a、b,整数之间以一个空格分隔。样例输入…

基于51单片机音乐盒LCD1602显示( proteus仿真+程序+原理图+设计报告+讲解视频)

基于51单片机音乐盒LCD1602显示( proteus仿真程序原理图设计报告讲解视频&#xff09; 仿真图proteus7.8及以上 程序编译器&#xff1a;keil 4/keil 5 编程语言&#xff1a;C语言 设计编号&#xff1a;S0065 音乐盒 1. 主要功能&#xff1a;2. 讲解视频&#xff1a;3. 仿真…

基于变色龙算法优化概率神经网络PNN的分类预测 - 附代码

基于变色龙算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于变色龙算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于变色龙优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络…