【C++】set和map的底层结构(AVL树红黑树)

news2025/1/16 16:42:07

文章目录

  • 一、前言
  • 二、AVL 树
    • 1.AVL树的概念
    • 2.AVL树节点的定义
    • 3.AVL树的插入
    • 4.AVL树的旋转
    • 5.AVL树的验证
    • 6.AVL树的删除、AVL树的性能
  • 三、红黑树
    • 1.红黑树的概念
    • 2.红黑树的性质
    • 3.红黑树节点的定义
    • 4.红黑树结构
    • 5.红黑树的插入操作
    • 6.红黑树的验证
    • 7.红黑树与AVL树比较
  • 四、红黑树模拟实现STL中的map与set
    • 1.红黑树的迭代器
    • 2.改造红黑树
    • 3.map的模拟实现
    • 4.set的模拟实现


一、前言

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。


二、AVL 树

1.AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)

2.AVL树节点的定义

AVL树节点的定义:

template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _bf(0)
	{}
	AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
	AVLTreeNode<T>* _pRight;  // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;
	int _bf;                  // 该节点的平衡因子
};

3.AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
bool Insert(const T& data)
{
	// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
	// ...

	// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否
	//破坏了AVL树的平衡性 

	 /*
	 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
	 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
	  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
	  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
	  
	 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
	  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
	成0,此时满足
	     AVL树的性质,插入成功
	  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
	新成正负1,此
	     时以pParent为根的树的高度增加,需要继续向上更新
	  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
	行旋转处理
	 */
		while (pParent)
		{
			// 更新双亲的平衡因子
			if (pCur == pParent->_pLeft)
				pParent->_bf--;
			else
				pParent->_bf++;
			// 更新后检测双亲的平衡因子
			if (0 == pParent->_bf)
			{
				break;
			}
			else if (1 == pParent->_bf || -1 == pParent->_bf)
			{
				// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲
				为根的二叉树
					// 的高度增加了一层,因此需要继续向上调整
					pCur = pParent;
				pParent = pCur->_pParent;
			}
			else
			{
				// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
				// 为根的树进行旋转处理
				if (2 == pParent->_bf)
				{
					// ...
				}
				else
				{
					// ...
				}
			}
		}
	return true;
}

4.AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。

旋转的目的:

  • 让这颗子树的高度不超过1(降低子树高度);
  • 旋转过程中继续保持它是搜索树;
  • 更新孩子节点的平衡因子;

根据节点插入位置的不同,AVL树的旋转分为四种:

  • 1.新节点插入较高左子树的左侧—左左:右单旋

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

/*
  上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加
  了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子
树增加一层,
  即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点
的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
     如果是根节点,旋转完成后,要更新根节点
     如果是子树,可能是某个节点的左子树,也可能是右子树
    
同学们再此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
*/

void _RotateR(PNode pParent)
{
	// pSubL: pParent的左孩子
	// pSubLR: pParent左孩子的右孩子,
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;

	// 旋转完成之后,30的右孩子作为双亲的左孩子
	pParent->_pLeft = pSubLR;
    
	// 如果30的左孩子的右孩子存在,更新亲双亲
	if (pSubLR)
		pSubLR->_pParent = pParent;

	// 60 作为 30的右孩子
	pSubL->_pRight = pParent;

	// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
	PNode pPParent = pParent->_pParent;

	// 更新60的双亲
	pParent->_pParent = pSubL;

	// 更新30的双亲
	pSubL->_pParent = pPParent;

	// 如果60是根节点,根新指向根节点的指针
	if (NULL == pPParent)
	{
		_pRoot = pSubL;
		pSubL->_pParent = NULL;
	}
	else
	{
		// 如果60是子树,可能是其双亲的左子树,也可能是右子树
		if (pPParent->_pLeft == pParent)
			pPParent->_pLeft = pSubL;
		else
			pPParent->_pRight = pSubL;
	}

	// 根据调整后的结构更新部分节点的平衡因子
	pParent->_bf = pSubL->_bf = 0;
}
  • 2.新节点插入较高右子树的右侧—右右:左单旋

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

实现及情况考虑可参考右单旋。

  • 3.新节点插入较高左子树的右侧—左右:先左单旋再右单旋

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进
// 行调整
void _RotateLR(PNode pParent)
{
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;

	// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
	// 点的平衡因子(pSubLR: pParent左孩子的右孩子)
		int bf = pSubLR->_bf;

	// 先对30进行左单旋
	_RotateL(pParent->_pLeft);

	// 再对90进行右单旋
	_RotateR(pParent);
	if (1 == bf)
		pSubL->_bf = -1;
	else if (-1 == bf)
		pParent->_bf = 1;
}
  • 4.新节点插入较高右子树的左侧—右左:先右单旋再左单旋

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

参考右左双旋。

总结:

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR

    • 当pSubR的平衡因子为1时,执行左单旋
    • 当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL

    • 当pSubL的平衡因子为-1是,执行右单旋
    • 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

5.AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
  • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  1. 验证其为平衡树
  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
  1. 验证用例

6.AVL树的删除、AVL树的性能

  • AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

  • AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。


三、红黑树

1.红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.红黑树的性质

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点(每条路径上都包含相同数目的黑色节点)
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

答:因为组织结构已经确定(构成树的黑色节点一定,红色节点只能在黑色节点之间),无论如何填充红色节点都不会超过全黑节点路径的两倍。

3.红黑树节点的定义

// 节点的颜色
enum Color { RED, BLACK };
// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{
	RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _color(color)
	{}

	RBTreeNode<ValueType>* _pLeft;   // 节点的左孩子
	RBTreeNode<ValueType>* _pRight;  // 节点的右孩子
	RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)

	ValueType _data;            // 节点的值域
	Color _color;               // 节点的颜色
};

思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?

答:违背规则3的代价比违背规则4的代价更小(红黑树的性质)。

4.红黑树结构

为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

5.红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  • 按照二叉搜索的树规则插入新节点
template<class ValueType>
class RBTree
{
	//……
	bool Insert(const ValueType& data)
	{
		PNode& pRoot = GetRoot();
		if (nullptr == pRoot)
		{
			pRoot = new Node(data, BLACK);
			// 根的双亲为头节点
			pRoot->_pParent = _pHead;
			_pHead->_pParent = pRoot;
		}
		else
		{
			// 1. 按照二叉搜索的树方式插入新节点
						// 2. 检测新节点插入后,红黑树的性质是否造到破坏,
			//   若满足直接退出,否则对红黑树进行旋转着色处理
		}

		// 根节点的颜色可能被修改,将其改回黑色
		pRoot->_color = BLACK;
		_pHead->_pLeft = LeftMost();
		_pHead->_pRight = RightMost();
		return true;
	}
private:
	PNode& GetRoot() { return _pHead->_pParent; }
	// 获取红黑树中最小节点,即最左侧节点
	PNode LeftMost();
	// 获取红黑树中最大节点,即最右侧节点
	PNode RightMost();
private:
	PNode _pHead;
};
  • 检测新节点插入后,红黑树的性质是否造到破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

  • 约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

  • 情况一: cur为红,p为红,g为黑,u存在且为红

注:下图右边的树为我们的修改目标

总结:解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

  • 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑

总结:p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,p为g的右孩子,cur为p的右孩子,则进行左单旋转;p、g变色–p变黑,g变红

  • 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

在这里插入图片描述

总结:p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,p为g的右孩子,cur为p的左孩子,则针对p做右单旋转;则转换成了情况2

6.红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质
bool IsValidRBTree()
{
	PNode pRoot = GetRoot();
	// 空树也是红黑树
	if (nullptr == pRoot)
		return true;

	// 检测根节点是否满足情况
	if (BLACK != pRoot->_color)
	{
		cout << "违反红黑树性质二:根节点必须为黑色" << endl;
		return false;
	}

	// 获取任意一条路径中黑色节点的个数
	size_t blackCount = 0;
	PNode pCur = pRoot;
	while (pCur)
	{
		if (BLACK == pCur->_color)
			blackCount++;
		pCur = pCur->_pLeft;
	}

	// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数
	size_t k = 0;
	return _IsValidRBTree(pRoot, k, blackCount);
}
bool _IsValidRBTree(PNode pRoot, size_t k, const size_t blackCount)
{
	//走到null之后,判断k和black是否相等
	if (nullptr == pRoot)
	{
		if (k != blackCount)
		{
			cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;
			return false;
		}
		return true;
	}

	// 统计黑色节点的个数
	if (BLACK == pRoot->_color)
		k++;

	// 检测当前节点与其双亲是否都为红色
	PNode pParent = pRoot->_pParent;
	if (pParent && RED == pParent->_color && RED == pRoot->_color)
	{
		cout << "违反性质三:没有连在一起的红色节点" << endl;
		return false;
	}

	return _IsValidRBTree(pRoot->_pLeft, k, blackCount) &&
		_IsValidRBTree(pRoot->_pRight, k, blackCount);
}

7.红黑树与AVL树比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

由于红黑树优秀的性能,它已经被应用于 C++ STL库 – map/set、mutil_map/mutil_set。

四、红黑树模拟实现STL中的map与set

1.红黑树的迭代器

迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代器,需要考虑以前问题:

  • begin() 与 end()

STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块?能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行–操作,必须要能找最后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • operator++() 与 operator–()
// 找迭代器的下一个节点,下一个节点肯定比其大
void Increasement()
{
	//分两种情况讨论:_pNode的右子树存在和不存在
	// 右子树存在
	if (_pNode->_pRight)
	{
		// 右子树中最小的节点,即右子树中最左侧节点
		_pNode = _pNode->_pRight;
		while (_pNode->_pLeft)
			_pNode = _pNode->_pLeft;
	}
	else
	{
		// 右子树不存在,向上查找,直到_pNode != pParent->right
		PNode pParent = _pNode->_pParent;
		while (pParent->_pRight == _pNode)
		{
			_pNode = pParent;
			pParent = _pNode->_pParent;
		}

		// 特殊情况:根节点没有右子树
		if (_pNode->_pRight != pParent)
			_pNode = pParent;
	}
}

// 获取迭代器指向节点的前一个节点
void Decreasement()
{
	//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不
	存在
		// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置
		if (_pNode->_pParent->_pParent == _pNode && _pNode->_color == RED)
			_pNode = _pNode->_pRight;
		else if (_pNode->_pLeft)
		{
			// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点
			_pNode = _pNode->_pLeft;
			while (_pNode->_pRight)
				_pNode = _pNode->_pRight;
		}
		else
		{
			// _pNode的左子树不存在,只能向上找
			PNode pParent = _pNode->_pParent;
			while (_pNode == pParent->_pLeft)
			{
				_pNode = pParent;
				pParent = _pNode->_pParent;
			}
			_pNode = pParent;
		}
}

2.改造红黑树

  • RBTree.h
#pragma once

enum Colour
{
	RED,
	BLACK,
};

template<class T>
struct RBTreeNode
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Colour _col;

	RBTreeNode(const T& data)
		:_data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)
	{}
};

template<class T, class Ref, class Ptr>
struct __RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T, Ref, Ptr> Self;
	typedef __RBTreeIterator<T, T&, T*> iterator;

	Node* _node;

	__RBTreeIterator(Node* node)
		:_node(node)
	{}

	// 普通迭代器的时候,他是拷贝构造
	// const迭代器的时候,他是构造,支持用普通迭代器构造const迭代器
	__RBTreeIterator(const iterator& s)
		:_node(s._node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	Self& operator++()
	{
		if (_node->_right)
		{
			Node* min = _node->_right;
			while (min->_left)
			{
				min = min->_left;
			}

			_node = min;
		}
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	Self& operator--()
	{
		if (_node->_left)
		{
			Node* max = _node->_left;
			while (max->_right)
			{
				max = max->_right;
			}

			_node = max;
		}
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_left)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	bool operator!=(const Self& s) const
	{
		return _node != s._node;
	}

	bool operator==(const Self& s) const
	{
		return _node == s._node;
	}

};


// map->RBTree<K, pair<const K, V>, MapKeyOfT> _t;
// set->RBTree<K, K, SetKeyOfT> _t;
template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef __RBTreeIterator<T, T& ,T*> iterator;
	typedef __RBTreeIterator<T, const T&, const T*> const_iterator;


	iterator begin()
	{
		Node* left = _root;
		while (left && left->_left)
		{
			left = left->_left;
		}

		return iterator(left);
	}

	iterator end()
	{
		return iterator(nullptr);
	}


	const_iterator begin() const
	{
		Node* left = _root;
		while (left && left->_left)
		{
			left = left->_left;
		}

		return const_iterator(left);
	}

	const_iterator end() const
	{
		return const_iterator(nullptr);
	}

	pair<iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(iterator(_root), true);
		}

		KeyOfT kot;
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(iterator(cur), false);
			}
		}

		cur = new Node(data);
		Node* newnode = cur;
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			if (parent == grandfater->_left)
			{
				Node* uncle = grandfater->_right;
				// 情况一  uncle存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_left)
					{
						// 情况二
						RotateR(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else
					{
						// 情况三
						RotateL(parent);
						RotateR(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
			else // (parent == grandfater->_right)
			{
				Node* uncle = grandfater->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					//   g                
					//      p
                    //         c
					if (cur == parent->_right)
					{
						RotateL(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else
					{
						//   g                
						//      p
						//   c
						RotateR(parent);
						RotateL(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;

		return make_pair(iterator(newnode), true);;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;


		if (ppNode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}

			subR->_parent = ppNode;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
		{
			subLR->_parent = parent;
		}

		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;

		//if (_root == parent)
		if (ppNode == nullptr)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}
	}

	void Inorder()
	{
		_Inorder(_root);
	}

	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_Inorder(root->_right);
	}

	bool Check(Node* root, int blackNum, const int ref)
	{
		if (root == nullptr)
		{
			//cout << blackNum << endl;
			if (blackNum != ref)
			{
				cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "违反规则:出现连续红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		return Check(root->_left, blackNum, ref)
			&& Check(root->_right, blackNum, ref);
	}

	bool IsBalance()
	{
		if (_root == nullptr)
		{
			return true;
		}

		if (_root->_col != BLACK)
		{
			return false;
		}

		int ref = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
			{
				++ref;
			}

			left = left->_left;
		}

		return Check(_root, 0, ref);
	}

private:
	Node* _root = nullptr;
};

template<class K>
struct SetKeyOfT
{
	const K& operator()(const K& key)
	{
		return key;
	}
};

void testRBTree()
{
	RBTree<int, int, SetKeyOfT<int>> t;
	RBTree<int, int, SetKeyOfT<int>>::const_iterator it = t.begin();
}

3.map的模拟实现

  • Map.h
#pragma once

#include "RBTree.h"

namespace _map
{
	template<class K, class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<const K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;


		iterator begin()
		{
			return _t.begin();
		}

		iterator end()
		{
			return _t.end();
		}

		const_iterator begin() const
		{
			return _t.begin();
		}

		const_iterator end() const
		{
			return _t.end();
		}

		pair<iterator, bool> insert(const pair<const K, V>& kv)
		{
			return _t.Insert(kv);
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}
	private:
		RBTree<K, pair<const K, V>, MapKeyOfT> _t;
	};

	void test_map()
	{
		int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
		map<int, int> m;
		for (auto e : a)
		{
			m.insert(make_pair(e, e));
		}

		map<int, int>::iterator it = m.begin();
		while (it != m.end())
		{
			//it->first++;
			it->second++;
			cout << it->first << ":" << it->second << endl;
			++it;
		}
		cout << endl;

		map<string, int> countMap;
		string arr[] = { "ƻ", "", "㽶", "ݮ", "ƻ", "", "ƻ", "ƻ", "", "ƻ", "㽶", "ƻ", "㽶" };
		for (auto& e : arr)
		{
			countMap[e]++;
		}

		for (auto& kv : countMap)
		{
			cout << kv.first << ":" << kv.second << endl;
		}
	}
}

4.set的模拟实现

  • Set.h
#pragma once

#include "RBTree.h"

namespace _set
{
	template<class K>
	class set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename RBTree<K, K, SetKeyOfT>::const_iterator iterator;
		typedef typename RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;

		iterator begin() const
		{
			return _t.begin();
		}

		iterator end() const
		{
			return _t.end();
		}

		// 20:21
		pair<iterator, bool> insert(const K& key)
		{
			pair<typename RBTree<K, K, SetKeyOfT>::iterator, bool> ret = _t.Insert(key);
			return pair<iterator, bool>(ret.first, ret.second);
		}
	private:
		RBTree<K, K, SetKeyOfT> _t;
	};

	void test_set()
	{
		int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
		set<int> s;
		for (auto e : a)
		{
			s.insert(e);
		}

		set<int>::iterator it = s.begin();
		while (it != s.end())
		{
			//*it += 10;
			cout << *it << " ";
			++it;
		}
		cout << endl;

		for (auto e : s)
		{
			cout << e << " ";
		}
		cout << endl;
	}
}

  • Test.cpp
#include <iostream>
#include <set>
#include <map>
#include <string>
using namespace std;

#include "RBTree.h"

#include "Map.h"
#include "Set.h"

int main()
{
	_map::test_map();
	_set::test_set();

	return 0;
}

🌹🌹 map和set的底层原理 的知识大概就讲到这里啦,博主后续会继续更新更多C++ 和 Linux的相关知识,干货满满,如果觉得博主写的还不错的话,希望各位小伙伴不要吝啬手中的三连哦!你们的支持是博主坚持创作的动力!💪💪

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1235268.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【藏经阁一起读】(77)__《Apache Dubbo3 云原生升级与企业最佳实践》

【藏经阁一起读】&#xff08;77&#xff09; __《Apache Dubbo3 云原生升级与企业最佳实践》 目录 一、Dubbo是什么 二、Dubbo具体提供了哪些核心能力&#xff1f; 三、构建企业级Dubbo微服务 &#xff08;一&#xff09;、创建项目模板 &#xff08;二&#xff09;、将…

OpenGL_Learn15(投光物)

1. 平行光 cube.vs******************#version 330 core layout (location 0) in vec3 aPos; layout (location 1 ) in vec3 aNormal; layout (location2) in vec2 aTexCoords;out vec3 FragPos; out vec3 Normal; out vec2 TexCoords;uniform mat4 model; uniform mat4 view…

基于猎食者算法优化概率神经网络PNN的分类预测 - 附代码

基于猎食者算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于猎食者算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于猎食者优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络…

C 语言获取文件绝对路径

示例代码 1&#xff0c;不包含根目录绝对路径&#xff1a; #include <stdlib.h> #include <stdio.h>int main(void) {char *fileName "/Dev/test.txt";char *abs_path _fullpath(NULL, fileName, 0);printf("The absolute path is: %s\n", a…

OAK相机通过振动测试!

编辑&#xff1a;OAK中国 首发&#xff1a;oakchina.cn 喜欢的话&#xff0c;请多多&#x1f44d;⭐️✍ 内容可能会不定期更新&#xff0c;官网内容都是最新的&#xff0c;请查看首发地址链接。 Hello&#xff0c;大家好&#xff0c;这里是OAK中国&#xff0c;我是助手君。 当…

【Spring Boot】如何运用Spring Cache并设置缓存失效时间

简单描述 Spring Cache是一个框架&#xff0c;实现了基于注解的缓存功能&#xff0c;只需要简单地加一个注解&#xff0c;就能实现缓存功能。Spring Cache提供了一层抽象&#xff0c;底层可以切换不同的cache实现。具体就是通过CacheManager接口来统一不同的缓存技术。CacheMan…

【双指针】盛水最多的容器

盛水最多的容器 文章目录 盛水最多的容器题目描述算法原理思路一思路二 代码实现Java代码实现C代码实现 题目描述 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与…

java springboot在测试类中构建虚拟MVC环境并发送请求

好 上文java springboot在测试类中启动一个web环境我们在测试类中搭了一个web环境 那么 下面就要想办法弄一个接口的测试 这边 我们还是要在controller包下去创建一个 controller类 写一个访问接口 这里 我创建一个 TestWeb.java 这里 我们编写代码如下 package com.example.…

基数排序详解(LSD方法+MSD方法+思路+图解+代码)

文章目录 基数排序一、基数排序概念1.LSD排序法&#xff08;最低位优先法&#xff09;2.MSD排序法&#xff08;最高位优先法&#xff09; 基数排序 一、基数排序 概念 基数排序是一种非比较型整数排序算法 将整数按位数切割成不同的数字&#xff0c;然后按每个位数分别比较 …

ArcGIS教程——ArcGIS工具-按线分割面

功能说明 在ArcGIS数据处理过程中&#xff0c;有时需要沿线把面要素分割开&#xff0c;可以使用高级编辑中的分割面&#xff08;Cut Polygon&#xff09;工具。那么&#xff0c;如果要用线图层分割面图层该怎么办呢&#xff1f;地理遥感生态网平台开发了一个自定义模型工具。它…

工业交换机的六种分类

工业交换机可以按照不同的标准进行分类&#xff0c;具体有六种分类方法。我们今天就来简单了解一下这六种分类方法&#xff0c;它们分别是&#xff1a;工业交换机的管理标准、工业交换机的结构标准、工业交换机的网络位置、工业交换机的传输速率、工业交换机的工作协议以及工业…

MySQL索引,你真的学会了?索引底层原理是什么?索引什么时候失效,你知道吗?

目录 1、什么是索引 2、索引分类 3、索引的基本操作 3.1、主键索引 3.2、单列索引 3.3、唯一索引 3.4、复合索引 4、索引的底层原理 为什么使用BTree而不是B-Tree? 如果数据量特别大的情况下&#xff0c;BTree会不会深度太深影响查询效率&#xff1f; 5、聚簇索引和…

【Linux系统化学习】进程优先级 | 进程饥饿 | 进程切换

个人主页点击直达&#xff1a;小白不是程序媛 Linux专栏&#xff1a;Linux系统化学习 目录 进程优先级 什么是优先级&#xff1f; 为什么会有优先级&#xff1f; 如何做到的&#xff1f; 优先级的动态调整 查看进程优先级的命令 PRI 和 NI PRI VS NI 修改进程优先级 …

https想访问本地部署的http://localhost接口

情况说明&#xff1a; 网址是https的&#xff0c;想访问java本地启的一个程序接口http://localhost:8089 解决办法 java程序加上

flutter vscode gradle 配置

我这边主要改了如图两个文件&#xff0c;然后把Gradle的问题解决了 参考文章&#xff1a; flutter运行Runt imeException: Timeout of 120000问题-CSDN博客 flutter配置gradle&#xff08;个人笔记&#xff0c;非教程&#xff09;_flutter gradle_追寻着星星的方向的博客-CSD…

本机idea连接虚拟机中的Hbase

相关环境&#xff1a; 虚拟机&#xff1a;Centos7 hadoop版本:3.1.3 hbase版本:2.4.11 zookeeper版本:3.5.7 Java IDE:IDEA JDK&#xff1a;8 步骤 步骤一&#xff1a;在idea创建一个maven项目 步骤二&#xff1a;在虚拟机里找到core-site.x…

FreeRTOS内存管理分析

目录 heap_1.c内存管理算法 heap_2.c内存管理算法 heap_3.c内存管理算法 heap_4.c内存管理算法 heap_5.c内存管理算法 内存管理对应用程序和操作系统来说非常重要&#xff0c;而内存对于嵌入式系统来说是寸土寸金的资源&#xff0c;FreeRTOS操作系统将内核与内存管理分开实…

腾讯云HAI域AI作画

目录 &#x1f433;前言&#xff1a; &#x1f680;了解高性能应用服务 HAI &#x1f47b;即插即用 轻松上手 &#x1f47b;横向对比 青出于蓝 &#x1f424;应用场景-AI作画 &#x1f424;应用场景-AI对话 &#x1f424;应用场景-算法研发 &#x1f680;使用HAI进行…

Decoder-Only、Encoder-Only和Encoder-Decoder架构的模型区别、优缺点以及使用其架构的模型示例

❤️觉得内容不错的话&#xff0c;欢迎点赞收藏加关注&#x1f60a;&#x1f60a;&#x1f60a;&#xff0c;后续会继续输入更多优质内容❤️ &#x1f449;有问题欢迎大家加关注私戳或者评论&#xff08;包括但不限于NLP算法相关&#xff0c;linux学习相关&#xff0c;读研读博…

YOLO改进系列之注意力机制(GatherExcite模型介绍)

模型结构 尽管在卷积神经网络&#xff08;CNN&#xff09;中使用自底向上的局部运算符可以很好地匹配自然图像的某些统计信息&#xff0c;但它也可能阻止此类模型捕获上下文的远程特征交互。Hu等人提出了一种简单&#xff0c;轻量级的方法&#xff0c;以在CNN中更好地利用上下…