axios的原理及实现一个简易版axios

news2024/10/6 10:30:34

面试官:你了解axios的原理吗?有看过它的源码吗?

一、axios的使用

关于axios的基本使用,上篇文章已经有所涉及,这里再稍微回顾下:

发送请求

import axios from 'axios';

axios(config) // 直接传入配置
axios(url[, config]) // 传入url和配置
axios[method](url[, option]) // 直接调用请求方式方法,传入url和配置
axios[method](url[, data[, option]]) // 直接调用请求方式方法,传入data、url和配置
axios.request(option) // 调用 request 方法

const axiosInstance = axios.create(config)
// axiosInstance 也具有以上 axios 的能力

axios.all([axiosInstance1, axiosInstance2]).then(axios.spread(response1, response2))
// 调用 all 和传入 spread 回调

请求拦截器

axios.interceptors.request.use(function (config) {
    // 这里写发送请求前处理的代码
    return config;
}, function (error) {
    // 这里写发送请求错误相关的代码
    return Promise.reject(error);
});

响应拦截器

axios.interceptors.response.use(function (response) {
    // 这里写得到响应数据后处理的代码
    return response;
}, function (error) {
    // 这里写得到错误响应处理的代码
    return Promise.reject(error);
});

取消请求

// 方式一
const CancelToken = axios.CancelToken;
const source = CancelToken.source();

axios.get('xxxx', {
  cancelToken: source.token
})
// 取消请求 (请求原因是可选的)
source.cancel('主动取消请求');

// 方式二
const CancelToken = axios.CancelToken;
let cancel;

axios.get('xxxx', {
  cancelToken: new CancelToken(function executor(c) {
    cancel = c;
  })
});
cancel('主动取消请求');

二、实现一个简易版axios

构建一个Axios构造函数,核心代码为request

class Axios {
    constructor() {

    }

    request(config) {
        return new Promise(resolve => {
            const {url = '', method = 'get', data = {}} = config;
            // 发送ajax请求
            const xhr = new XMLHttpRequest();
            xhr.open(method, url, true);
            xhr.onload = function() {
                console.log(xhr.responseText)
                resolve(xhr.responseText);
            }
            xhr.send(data);
        })
    }
}

导出axios实例

// 最终导出axios的方法,即实例的request方法
function CreateAxiosFn() {
    let axios = new Axios();
    let req = axios.request.bind(axios);
    return req;
}

// 得到最后的全局变量axios
let axios = CreateAxiosFn();

上述就已经能够实现axios({ })这种方式的请求

下面是来实现下axios.method()这种形式的请求

// 定义get,post...方法,挂在到Axios原型上
const methodsArr = ['get', 'delete', 'head', 'options', 'put', 'patch', 'post'];
methodsArr.forEach(met => {
    Axios.prototype[met] = function() {
        console.log('执行'+met+'方法');
        // 处理单个方法
        if (['get', 'delete', 'head', 'options'].includes(met)) { // 2个参数(url[, config])
            return this.request({
                method: met,
                url: arguments[0],
                ...arguments[1] || {}
            })
        } else { // 3个参数(url[,data[,config]])
            return this.request({
                method: met,
                url: arguments[0],
                data: arguments[1] || {},
                ...arguments[2] || {}
            })
        }

    }
})

Axios.prototype上的方法搬运到request

首先实现个工具类,实现将b方法混入到a,并且修改this指向

const utils = {
  extend(a,b, context) {
    for(let key in b) {
      if (b.hasOwnProperty(key)) {
        if (typeof b[key] === 'function') {
          a[key] = b[key].bind(context);
        } else {
          a[key] = b[key]
        }
      }
      
    }
  }
}

修改导出的方法

function CreateAxiosFn() {
  let axios = new Axios();
  
  let req = axios.request.bind(axios);
  // 增加代码
  utils.extend(req, Axios.prototype, axios)
  
  return req;
}

构建拦截器的构造函数

class InterceptorsManage {
  constructor() {
    this.handlers = [];
  }

  use(fullfield, rejected) {
    this.handlers.push({
      fullfield,
      rejected
    })
  }
}

实现axios.interceptors.response.useaxios.interceptors.request.use

class Axios {
    constructor() {
        // 新增代码
        this.interceptors = {
            request: new InterceptorsManage,
            response: new InterceptorsManage
        }
    }

    request(config) {
 		...
    }
}

执行语句axios.interceptors.response.useaxios.interceptors.request.use的时候,实现获取axios实例上的interceptors对象,然后再获取responserequest拦截器,再执行对应的拦截器的use方法

Axios上的方法和属性搬到request过去

function CreateAxiosFn() {
  let axios = new Axios();
  
  let req = axios.request.bind(axios);
  // 混入方法, 处理axios的request方法,使之拥有get,post...方法
  utils.extend(req, Axios.prototype, axios)
  // 新增代码
  utils.extend(req, axios)
  return req;
}

现在request也有了interceptors对象,在发送请求的时候,会先获取request拦截器的handlers的方法来执行

首先将执行ajax的请求封装成一个方法

request(config) {
    this.sendAjax(config)
}
sendAjax(config){
    return new Promise(resolve => {
        const {url = '', method = 'get', data = {}} = config;
        // 发送ajax请求
        console.log(config);
        const xhr = new XMLHttpRequest();
        xhr.open(method, url, true);
        xhr.onload = function() {
            console.log(xhr.responseText)
            resolve(xhr.responseText);
        };
        xhr.send(data);
    })
}

获得handlers中的回调

request(config) {
    // 拦截器和请求组装队列
    let chain = [this.sendAjax.bind(this), undefined] // 成对出现的,失败回调暂时不处理

    // 请求拦截
    this.interceptors.request.handlers.forEach(interceptor => {
        chain.unshift(interceptor.fullfield, interceptor.rejected)
    })

    // 响应拦截
    this.interceptors.response.handlers.forEach(interceptor => {
        chain.push(interceptor.fullfield, interceptor.rejected)
    })

    // 执行队列,每次执行一对,并给promise赋最新的值
    let promise = Promise.resolve(config);
    while(chain.length > 0) {
        promise = promise.then(chain.shift(), chain.shift())
    }
    return promise;
}

chains大概是['fulfilled1','reject1','fulfilled2','reject2','this.sendAjax','undefined','fulfilled2','reject2','fulfilled1','reject1']这种形式

这样就能够成功实现一个简易版axios

三、源码分析

首先看看目录结构

axios发送请求有很多实现的方法,实现入口文件为axios.js

function createInstance(defaultConfig) {
  var context = new Axios(defaultConfig);

  // instance指向了request方法,且上下文指向context,所以可以直接以 instance(option) 方式调用 
  // Axios.prototype.request 内对第一个参数的数据类型判断,使我们能够以 instance(url, option) 方式调用
  var instance = bind(Axios.prototype.request, context);

  // 把Axios.prototype上的方法扩展到instance对象上,
  // 并指定上下文为context,这样执行Axios原型链上的方法时,this会指向context
  utils.extend(instance, Axios.prototype, context);

  // Copy context to instance
  // 把context对象上的自身属性和方法扩展到instance上
  // 注:因为extend内部使用的forEach方法对对象做for in 遍历时,只遍历对象本身的属性,而不会遍历原型链上的属性
  // 这样,instance 就有了  defaults、interceptors 属性。
  utils.extend(instance, context);
  return instance;
}

// Create the default instance to be exported 创建一个由默认配置生成的axios实例
var axios = createInstance(defaults);

// Factory for creating new instances 扩展axios.create工厂函数,内部也是 createInstance
axios.create = function create(instanceConfig) {
  return createInstance(mergeConfig(axios.defaults, instanceConfig));
};

// Expose all/spread
axios.all = function all(promises) {
  return Promise.all(promises);
};

axios.spread = function spread(callback) {
  return function wrap(arr) {
    return callback.apply(null, arr);
  };
};
module.exports = axios;

主要核心是 Axios.prototype.request,各种请求方式的调用实现都是在 request 内部实现的, 简单看下 request 的逻辑

Axios.prototype.request = function request(config) {
  // Allow for axios('example/url'[, config]) a la fetch API
  // 判断 config 参数是否是 字符串,如果是则认为第一个参数是 URL,第二个参数是真正的config
  if (typeof config === 'string') {
    config = arguments[1] || {};
    // 把 url 放置到 config 对象中,便于之后的 mergeConfig
    config.url = arguments[0];
  } else {
    // 如果 config 参数是否是 字符串,则整体都当做config
    config = config || {};
  }
  // 合并默认配置和传入的配置
  config = mergeConfig(this.defaults, config);
  // 设置请求方法
  config.method = config.method ? config.method.toLowerCase() : 'get';
  /*
    something... 此部分会在后续拦截器单独讲述
  */
};

// 在 Axios 原型上挂载 'delete', 'get', 'head', 'options' 且不传参的请求方法,实现内部也是 request
utils.forEach(['delete', 'get', 'head', 'options'], function forEachMethodNoData(method) {
  Axios.prototype[method] = function(url, config) {
    return this.request(utils.merge(config || {}, {
      method: method,
      url: url
    }));
  };
});

// 在 Axios 原型上挂载 'post', 'put', 'patch' 且传参的请求方法,实现内部同样也是 request
utils.forEach(['post', 'put', 'patch'], function forEachMethodWithData(method) {
  Axios.prototype[method] = function(url, data, config) {
    return this.request(utils.merge(config || {}, {
      method: method,
      url: url,
      data: data
    }));
  };
});

request入口参数为config,可以说config贯彻了axios的一生

axios 中的 config 主要分布在这几个地方:

  • 默认配置 defaults.js
  • config.method默认为 get
  • 调用 createInstance 方法创建 axios 实例,传入的config
  • 直接或间接调用 request 方法,传入的 config
// axios.js
// 创建一个由默认配置生成的axios实例
var axios = createInstance(defaults);

// 扩展axios.create工厂函数,内部也是 createInstance
axios.create = function create(instanceConfig) {
  return createInstance(mergeConfig(axios.defaults, instanceConfig));
};

// Axios.js
// 合并默认配置和传入的配置
config = mergeConfig(this.defaults, config);
// 设置请求方法
config.method = config.method ? config.method.toLowerCase() : 'get';

从源码中,可以看到优先级:默认配置对象default < method:get < Axios的实例属性this.default < request参数

下面重点看看request方法

Axios.prototype.request = function request(config) {
  /*
    先是 mergeConfig ... 等,不再阐述
  */
  // Hook up interceptors middleware 创建拦截器链. dispatchRequest 是重中之重,后续重点
  var chain = [dispatchRequest, undefined];

  // push各个拦截器方法 注意:interceptor.fulfilled 或 interceptor.rejected 是可能为undefined
  this.interceptors.request.forEach(function unshiftRequestInterceptors(interceptor) {
    // 请求拦截器逆序 注意此处的 forEach 是自定义的拦截器的forEach方法
    chain.unshift(interceptor.fulfilled, interceptor.rejected);
  });

  this.interceptors.response.forEach(function pushResponseInterceptors(interceptor) {
    // 响应拦截器顺序 注意此处的 forEach 是自定义的拦截器的forEach方法
    chain.push(interceptor.fulfilled, interceptor.rejected);
  });

  // 初始化一个promise对象,状态为resolved,接收到的参数为已经处理合并过的config对象
  var promise = Promise.resolve(config);

  // 循环拦截器的链
  while (chain.length) {
    promise = promise.then(chain.shift(), chain.shift()); // 每一次向外弹出拦截器
  }
  // 返回 promise
  return promise;
};

拦截器interceptors是在构建axios实例化的属性

function Axios(instanceConfig) {
  this.defaults = instanceConfig;
  this.interceptors = {
    request: new InterceptorManager(), // 请求拦截
    response: new InterceptorManager() // 响应拦截
  };
}

InterceptorManager构造函数

// 拦截器的初始化 其实就是一组钩子函数
function InterceptorManager() {
  this.handlers = [];
}

// 调用拦截器实例的use时就是往钩子函数中push方法
InterceptorManager.prototype.use = function use(fulfilled, rejected) {
  this.handlers.push({
    fulfilled: fulfilled,
    rejected: rejected
  });
  return this.handlers.length - 1;
};

// 拦截器是可以取消的,根据use的时候返回的ID,把某一个拦截器方法置为null
// 不能用 splice 或者 slice 的原因是 删除之后 id 就会变化,导致之后的顺序或者是操作不可控
InterceptorManager.prototype.eject = function eject(id) {
  if (this.handlers[id]) {
    this.handlers[id] = null;
  }
};

// 这就是在 Axios的request方法中 中循环拦截器的方法 forEach 循环执行钩子函数
InterceptorManager.prototype.forEach = function forEach(fn) {
  utils.forEach(this.handlers, function forEachHandler(h) {
    if (h !== null) {
      fn(h);
    }
  });
}

请求拦截器方法是被 unshift到拦截器中,响应拦截器是被push到拦截器中的。最终它们会拼接上一个叫dispatchRequest的方法被后续的 promise 顺序执行

var utils = require('./../utils');
var transformData = require('./transformData');
var isCancel = require('../cancel/isCancel');
var defaults = require('../defaults');
var isAbsoluteURL = require('./../helpers/isAbsoluteURL');
var combineURLs = require('./../helpers/combineURLs');

// 判断请求是否已被取消,如果已经被取消,抛出已取消
function throwIfCancellationRequested(config) {
  if (config.cancelToken) {
    config.cancelToken.throwIfRequested();
  }
}

module.exports = function dispatchRequest(config) {
  throwIfCancellationRequested(config);

  // 如果包含baseUrl, 并且不是config.url绝对路径,组合baseUrl以及config.url
  if (config.baseURL && !isAbsoluteURL(config.url)) {
    // 组合baseURL与url形成完整的请求路径
    config.url = combineURLs(config.baseURL, config.url);
  }

  config.headers = config.headers || {};

  // 使用/lib/defaults.js中的transformRequest方法,对config.headers和config.data进行格式化
  // 比如将headers中的Accept,Content-Type统一处理成大写
  // 比如如果请求正文是一个Object会格式化为JSON字符串,并添加application/json;charset=utf-8的Content-Type
  // 等一系列操作
  config.data = transformData(
    config.data,
    config.headers,
    config.transformRequest
  );

  // 合并不同配置的headers,config.headers的配置优先级更高
  config.headers = utils.merge(
    config.headers.common || {},
    config.headers[config.method] || {},
    config.headers || {}
  );

  // 删除headers中的method属性
  utils.forEach(
    ['delete', 'get', 'head', 'post', 'put', 'patch', 'common'],
    function cleanHeaderConfig(method) {
      delete config.headers[method];
    }
  );

  // 如果config配置了adapter,使用config中配置adapter的替代默认的请求方法
  var adapter = config.adapter || defaults.adapter;

  // 使用adapter方法发起请求(adapter根据浏览器环境或者Node环境会有不同)
  return adapter(config).then(
    // 请求正确返回的回调
    function onAdapterResolution(response) {
      // 判断是否以及取消了请求,如果取消了请求抛出以取消
      throwIfCancellationRequested(config);

      // 使用/lib/defaults.js中的transformResponse方法,对服务器返回的数据进行格式化
      // 例如,使用JSON.parse对响应正文进行解析
      response.data = transformData(
        response.data,
        response.headers,
        config.transformResponse
      );

      return response;
    },
    // 请求失败的回调
    function onAdapterRejection(reason) {
      if (!isCancel(reason)) {
        throwIfCancellationRequested(config);

        if (reason && reason.response) {
          reason.response.data = transformData(
            reason.response.data,
            reason.response.headers,
            config.transformResponse
          );
        }
      }
      return Promise.reject(reason);
    }
  );
};

再来看看axios是如何实现取消请求的,实现文件在CancelToken.js

function CancelToken(executor) {
  if (typeof executor !== 'function') {
    throw new TypeError('executor must be a function.');
  }
  // 在 CancelToken 上定义一个 pending 状态的 promise ,将 resolve 回调赋值给外部变量 resolvePromise
  var resolvePromise;
  this.promise = new Promise(function promiseExecutor(resolve) {
    resolvePromise = resolve;
  });

  var token = this;
  // 立即执行 传入的 executor函数,将真实的 cancel 方法通过参数传递出去。
  // 一旦调用就执行 resolvePromise 即前面的 promise 的 resolve,就更改promise的状态为 resolve。
  // 那么xhr中定义的 CancelToken.promise.then方法就会执行, 从而xhr内部会取消请求
  executor(function cancel(message) {
    // 判断请求是否已经取消过,避免多次执行
    if (token.reason) {
      return;
    }
    token.reason = new Cancel(message);
    resolvePromise(token.reason);
  });
}

CancelToken.source = function source() {
  // source 方法就是返回了一个 CancelToken 实例,与直接使用 new CancelToken 是一样的操作
  var cancel;
  var token = new CancelToken(function executor(c) {
    cancel = c;
  });
  // 返回创建的 CancelToken 实例以及取消方法
  return {
    token: token,
    cancel: cancel
  };
};

实际上取消请求的操作是在 xhr.js 中也有响应的配合的

if (config.cancelToken) {
    config.cancelToken.promise.then(function onCanceled(cancel) {
        if (!request) {
            return;
        }
        // 取消请求
        request.abort();
        reject(cancel);
    });
}

巧妙的地方在 CancelTokenexecutor 函数,通过resolve函数的传递与执行,控制promise的状态

小结

参考文献

  • https://juejin.cn/post/6856706569263677447#heading-4
  • https://juejin.cn/post/6844903907500490766
  • https://github.com/axios/axios

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1231909.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

hdfsClient_java对hdfs进行上传、下载、删除、移动、打印文件信息尚硅谷大海哥

Java可以通过Hadoop提供的HDFS Java API来控制HDFS。通过HDFS Java API&#xff0c;可以实现对HDFS的文件操作&#xff0c;包括文件的创建、读取、写入、删除等操作。 具体来说&#xff0c;Java可以通过HDFS Java API来创建一个HDFS文件系统对象&#xff0c;然后使用该对象来进…

PPT幻灯片里的图片,批量提取

之前分享过如何将PPT文件导出成图片&#xff0c;今天继续分享PPT技巧&#xff0c;如何提取出PPT文件里面的图片。 首先&#xff0c;我们将PPT文件的后缀名&#xff0c;修改为rar&#xff0c;将文件改为压缩包文件 然后我们将压缩包文件进行解压 最好是以文件夹的形式解压出来…

车载毫米波雷达行业发展1——概述

1.1 毫米波雷达定义及产品演进 1.1.1 毫米波雷达定义 毫米波雷达(mmWave Radar)是指工作在毫米波波段的雷达&#xff0c;其频域介于 30&#xff5e;300GHz&#xff0c;波长1~10mm。毫米波雷达稳定性高&#xff0c;抗干扰能力强&#xff0c;可穿透雾、烟、灰尘环境&#xff0…

发币成功,记录一下~

N年前就听说了这样一种说法——“一个熟练的区块链工程师&#xff0c;10分钟就可以发出一个新的币” 以前仅仅是有这么一个认识&#xff0c;但当时并不特别关注这个领域。 最近系统性学习中&#xff0c;今天尝试发币成功啦&#xff0c;记录一下&#xff5e; 发在 Sepolia Tes…

CentOS7安装部署Kafka with KRaft

文章目录 CentOS7安装部署Kafka with KRaft一、前言1.简介2.架构3.环境 二、正文1.部署服务器2.基础环境1&#xff09;主机名2&#xff09;Hosts文件3&#xff09;关闭防火墙4&#xff09;JDK 安装部署 3.单机部署1&#xff09;下载软件包2&#xff09;修改配置文件3&#xff0…

[Genode] ARM TrustZone

这是关于读文章ARM TrustZone的记录&#xff0c;原文是英文&#xff0c;刚开始会有点反应不过来&#xff0c;这里大部分是对文章的翻译与提取。 ARM信任区技术 ARM信任区是在 热烈讨论关于X86平台上的可信平台模块&#xff08;TPM&#xff09; 时引入的。。 就像TPM芯片神奇…

◢Django 分页+搜索

1、搜索数据 从数据库中获取数据&#xff0c;并进行筛选&#xff0c;xx__contains q作为条件&#xff0c;查找的是xx列中有q的所有数据条 当有多个筛选条件时&#xff0c;将条件变成一个字典&#xff0c;传入 **字典 &#xff0c;ORM会自行翻译并查找。 筛选电话号码这一列…

【Java】volatile-内存可见性问题

1、什么是内存可见性问题&#xff1f; &#xff08;1&#xff09;实例 要明白什么是内存可见性&#xff0c;我们首先来看一段代码 public class demo1 {public static int isQuit 0;public static void main(String[] args) {Thread thread1 new Thread(()->{while (is…

【每日刷题——语音信号篇】

思考与练习 练习2.1 语音信号在产生的过程中&#xff0c;以及被感知的过程中&#xff0c;分别要经过人体的哪些器官&#xff1f; 1.产生过程&#xff1a; 肺部空气 → \rightarrow →冲击声带 → \rightarrow →通过声道&#xff08;可以调节&#xff09; → \rightarrow →…

【小呆的力学笔记】有限元专题之循环对称结构有限元原理

文章目录 1. 循环对称问题的提出2. 循环对称条件2.1 节点位移的循环对称关系2.2 节点内力的循环对称关系 3. 在平衡方程中引入循环对称条件 1. 循环对称问题的提出 许多工程结构都是其中某一扇面的n次周向重复&#xff0c;也就是是周期循环对称结构。如果弹性体的几何形状、约…

【洛谷 P3743】kotori的设备 题解(二分答案+递归)

kotori的设备 题目背景 kotori 有 n n n 个可同时使用的设备。 题目描述 第 i i i 个设备每秒消耗 a i a_i ai​ 个单位能量。能量的使用是连续的&#xff0c;也就是说能量不是某时刻突然消耗的&#xff0c;而是匀速消耗。也就是说&#xff0c;对于任意实数&#xff0c;…

java学习part06数组工具类

1比较内容 2输出信息 3值填充 4快速排序 5二分查找 负数没找到&#xff0c;其他表示下标

SVG圆形 <circle>的示例代码

本专栏是汇集了一些HTML常常被遗忘的知识&#xff0c;这里算是温故而知新&#xff0c;往往这些零碎的知识点&#xff0c;在你开发中能起到炸惊效果。我们每个人都没有过目不忘&#xff0c;过久不忘的本事&#xff0c;就让这一点点知识慢慢渗透你的脑海。 本专栏的风格是力求简洁…

【MySql】13- 实践篇(十一)

文章目录 1. 自增主键为什么不是连续的&#xff1f;1.1 自增值保存在哪儿&#xff1f;1.2 自增值修改机制1.2.1 自增值的修改时机1.2.2 自增值为什么不能回退? 1.3 自增锁的优化1.3.1 自增锁设计历史 2. Insert语句为何很多锁?2.1 insert … select 语句2.2 insert 循环写入2…

记录--alova组件使用方法(区别axios)

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 在我们写项目代码时&#xff0c;应该更加专注于业务逻辑的实现&#xff0c;而把定式代码交给js库或工程化自动处理&#xff0c;而我想说的是&#xff0c;请求逻辑其实也是可以继续简化的。 你可能会说…

npm install 下载不下来依赖解决方案

背景 最近在构建 前端自动化部署 的方案中发现了一个问题&#xff0c;就是我在npm install的时候&#xff0c;有时候成功&#xff0c;有时候不成功&#xff0c;而且什么代码也没发生更改&#xff0c;报错也就是那么几个错&#xff0c;所以在此也整理了一下遇到这种情况&#xf…

音视频同步笔记 - 以音频时间为基

音视频同步 - 以音频时间为基 上图介绍&#xff1a; 该图是以音频的时间为基&#xff0c;对视频播放时间的延迟控制方案&#xff0c;只调整视频的播放延时。delayTime是视频播放的延迟时间&#xff0c;初始值是1 / FPS * 1000 (ms)&#xff0c;如果FPS为25帧率&#xff0c;初始…

MySQL 备份和恢复

目录 一.MySQL数据库的备份的分类 1.1.数据备份的重要性 1.2.数据库备份的分类和备份策略 1.3.常见的备份方法 二.MySQL完全备份 2.1.什么是完全备份 2.2.完全备份的优缺点 2.3.实现物理冷备份与恢复 1&#xff09;实现流程 2&#xff09;前置准备 3&#xff09;实现…

Shell判断:模式匹配:case(一)

一、前言 shell编程中if和case都是用来做流控的。 二、case语法结构 case 变量 in 模式1&#xff09; 命令序列1 ;; 模式2&#xff09; 命令序列2 ;; 模式3&#xff09; 命令序列3 ;; *) 无匹配…

共享内存和信号量的配合机制

进程之间共享内存的机制&#xff0c;有了这个机制&#xff0c;两个进程可以像访问自己内存中的变量一样&#xff0c;访问共享内存的变量。但是同时问题也来了&#xff0c;当两个进程共享内存了&#xff0c;就会存在同时读写的问题&#xff0c;就需要对于共享的内存进行保护&…