又欲又撩人,基于新版Bert-vits2V2.0.2音色模型雷电将军八重神子一键推理整合包分享

news2024/11/15 6:42:23

Bert-vits2项目近期炸裂更新,放出了v2.0.2版本的代码,修正了存在于2.0先前版本的重大bug,并且重炼了底模,本次更新是即1.1.1版本后最重大的更新,支持了三语言训练及混合合成,并且做到向下兼容,可以推理老版本的模型,本次我们基于新版V2.0.2来本地推理原神小姐姐们的音色模型。

具体的更新日志请参见官网:

https://github.com/fishaudio/Bert-VITS2/releases

模型配置

首先克隆官方最近的v2.0.2代码:

git clone https://github.com/fishaudio/Bert-VITS2.git

随后在项目的根目录创建Data目录

cd Bert-VITS2
mkdir Data

该目录用来存放音色模型文件。

随后下载雷电将军和八重神子的音色模型:

链接:https://pan.baidu.com/s/1e9gKidfvYKLU2IzjoW3sVw?pwd=v3uc 

这两个模型都是基于老版本进行训练的,囿于篇幅,训练流程先按下不表。

需要注意的是,模型文件所在的目录不支持中文,最好改成英文,目录结构如下所示:

E:\work\Bert-VITS2-v202_launch_yingAndBachong\Data>tree/F  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  
├───bachong  
│   │   config.json  
│   │  
│   └───models  
│           G_47700.pth  
│  
└───ying  
    │   config.json  
    │   config.yml  
    │  
    ├───custom_character_voice  
    ├───filelists  
    └───models  
            G_4600.pth

这里.pth文件就是模型本体,config.json是模型配置文件。

当然,除了笔者分享的模型,也可以加载之前老版本自己训练的模型,但需要注意的是,必须指定模型训练的版本,也就是当时训练操作过程中Bert-VITS2的版本,比如笔者的模型训练时是基于v1.1.1,那么就必须在config中进行指定:

{  
  "train": {  
    "log_interval": 100,  
    "eval_interval": 100,  
    "seed": 52,  
    "epochs": 200,  
    "learning_rate": 0.0001,  
    "betas": [  
      0.8,  
      0.99  
    ],  
    "eps": 1e-09,  
    "batch_size": 4,  
    "fp16_run": false,  
    "lr_decay": 0.999875,  
    "segment_size": 16384,  
    "init_lr_ratio": 1,  
    "warmup_epochs": 0,  
    "c_mel": 45,  
    "c_kl": 1.0,  
    "skip_optimizer": true  
  },  
  "data": {  
    "training_files": "filelists/train.list",  
    "validation_files": "filelists/val.list",  
    "max_wav_value": 32768.0,  
    "sampling_rate": 44100,  
    "filter_length": 2048,  
    "hop_length": 512,  
    "win_length": 2048,  
    "n_mel_channels": 128,  
    "mel_fmin": 0.0,  
    "mel_fmax": null,  
    "add_blank": true,  
    "n_speakers": 2,  
    "cleaned_text": true,  
    "spk2id": {  
      "bachong": 0  
    }  
  },  
  "model": {  
    "use_spk_conditioned_encoder": true,  
    "use_noise_scaled_mas": true,  
    "use_mel_posterior_encoder": false,  
    "use_duration_discriminator": true,  
    "inter_channels": 192,  
    "hidden_channels": 192,  
    "filter_channels": 768,  
    "n_heads": 2,  
    "n_layers": 6,  
    "kernel_size": 3,  
    "p_dropout": 0.1,  
    "resblock": "1",  
    "resblock_kernel_sizes": [  
      3,  
      7,  
      11  
    ],  
    "resblock_dilation_sizes": [  
      [  
        1,  
        3,  
        5  
      ],  
      [  
        1,  
        3,  
        5  
      ],  
      [  
        1,  
        3,  
        5  
      ]  
    ],  
    "upsample_rates": [  
      8,  
      8,  
      2,  
      2,  
      2  
    ],  
    "upsample_initial_channel": 512,  
    "upsample_kernel_sizes": [  
      16,  
      16,  
      8,  
      2,  
      2  
    ],  
    "n_layers_q": 3,  
    "use_spectral_norm": false,  
    "gin_channels": 256  
  },  
  "version": "1.1.1"  
}

最后的version参数用来指定模型,如果不指定模型,系统默认是v2.0版本,假设模型和版本不匹配,会造成本地推理的音色异常。

修改好版本之后,可以通过pip安装依赖:

pip install -r requirements.txt

至此,模型就配置好了。

本地推理

依赖安装好之后,在根目录执行命令:

python3 server_fastapi.py

程序返回:

E:\work\Bert-VITS2-v202_launch_yingAndBachong>python server_fastapi.py  
E:\work\Bert-VITS2-v202_launch_yingAndBachong\venv\lib\site-packages\torch\nn\utils\weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.  
  warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")  
11-20 11:08:46 SUCCESS  | server_fastapi.py:101 | 添加模型E:\work\Bert-VITS2-v202_launch_yingAndBachong\Data\ying\models\G_4600.pth,使用配置文件E:\work\Bert-VITS2-v202_launch_yingAndBachong\Data\ying\config.json  
11-20 11:08:46 SUCCESS  | server_fastapi.py:107 | 模型已存在,添加模型引用。  
11-20 11:08:46 WARNING  | server_fastapi.py:626 | 本地服务,请勿将服务端口暴露于外网  
11-20 11:08:46 INFO     | server_fastapi.py:627 | api文档地址 http://127.0.0.1:7860/docs

说明服务已经启动,没错,Bert-vits2的推理api是基于Fast-api的。关于Fast-api框架,请移步:

2020年是时候更新你的技术武器库了:Asgi vs Wsgi(FastAPI vs Flask)

随后访问http://127.0.0.1:7860/:

这里可以将两个模型一起加载进来。

右侧参数为推理设备和语言,默认是使用cuda和中文。

如果是没有N卡的同学,也可以选择用cpu进行本地推理。

随后将推理文本写入文本框:

这里值得一提的是,Bert-vits2解决了长文本报错的问题,如果是长文本,只需要打开自动切分的选项即可,系统会根据文本中的标点进行切割,减少每次推理的token数量,从而避免报错。

最后新版本支持多模型同时推理:

只需要选择对应的模型选项,然后下载音频即可。

结语

笔者已经采用:一键整合,万用万灵,Python3.10项目嵌入式一键整合包的制作(Embed)的方式将项目做成了一键整合包,解压后运行launch.bat文件,开箱可用,一键推理:

链接:https://pan.baidu.com/s/12pinwHb5mmYvskYTZtLKvg?pwd=v3uc

欢迎诸公下载品鉴。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1231616.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

新一代车载以太网传输技术研讨会(AEM)顺利圆满举行

时间定格在2023年11月17日,新一代车载以太网传输技术研讨会在东莞国际会展中心举行。来自相关的的企业几百家。当然,深圳维信仪器作为主办方(AEM线束测试仪中国区总平台)举优质的线束测试设备,不论是手持线束测试&…

在VSCode创建vue项目,出现“因为在此系统上禁止运行脚本”问题

问题:vue : 无法加载文件 C:\Users\***\***\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。有关详细信息,请参阅 ht tps:/go.microsoft.com/fwlink/?LinkID135170 中的 about_Execution_Policies。 所在位置 行:1 字符: 1 解决&#xff…

安装oracle19c卡在安装界面

我在个人window10电脑上安装 Oracle 19c 时遇到问题。解压后的数据库文件放在没有中文的文件目录下面,用管理员用户启动 CMD 窗口进行安装,但随后卡在菜单上。 取消安装之后去任务管理器中的服务里停掉OracleRemExecServiceV2服务。 用管理员运行CMD…

Threejs_06 多材质的实现

Threejs 同一个几何体如何实现多材质呢? 多材质的实现 1.使用索引绘制一个几何体 //创建几何体(三角形) const geometry new THREE.BufferGeometry();//使用索引绘制 (两个共用的) const vertices new Float32Array([-1.0, -1.0, 0.0, 1.0, -1.0, 0.0, 1.0, 1…

解决Tomcat中文乱码

cmd乱码如图: idea中运行Tomcat控制台出现乱码: 解决办法: 找到两个idea的vmoptions配置文件,在文件中追加-Dfile.encodingUTF-8 -Dfile.encodingUTF-8保存退出。 重启idea重新运行Tomcat: maven、tomcat 超级详…

世微 电动车摩托车灯 5-80V 1.2A 一切二降压恒流驱动器AP2915

产品描述 AP2915 是一款可以一路灯串切换两路灯串的降压恒流驱动器,高效率、外围简单、内置功率管,适用于5-80V 输入的高精度降压 LED 恒流驱动芯片。内置功率管输出最大功率可达 12W,最大电流 1.2A。AP2915 一路灯亮切换两路灯亮,其中一路灯…

qsort

qsort void*修饰后pv不能1&#xff0c;-1也不能解引用 例子 /* qsort example */ #include <stdio.h> /* printf */ #include <stdlib.h> /* qsort */int values[] { 40, 10, 100, 90, 20, 25 };int compare (const void * a, const void * b) {return…

【CVE-2023-4357】Chrome-XXE 任意文件读取漏洞复现及原理解析

官方文档 https://bugs.chromium.org/p/chromium/issues/detail?id1458911 漏洞描述 Short description: Libxslt is the default XSL library used in WebKit based browsers such as chrome, safari etc. Libxslt allows external entities inside documents that are lo…

IP地理位置定位技术:保护网络安全的新利器

随着互联网的普及和网络活动的日益频繁&#xff0c;网络安全问题越来越受到人们的关注。恶意流量攻击、网络欺诈等网络安全威胁层出不穷&#xff0c;如何准确识别和定位网络攻击者成为一项重要任务。在这个背景下&#xff0c;IP地理位置定位技术应运而生&#xff0c;为网络安全…

(五)什么是Vite——冷启动时vite做了什么(依赖、预构建)

vite分享ppt&#xff0c;感兴趣的可以下载&#xff1a; ​​​​​​​Vite分享、原理介绍ppt 什么是vite系列目录&#xff1a; &#xff08;一&#xff09;什么是Vite——vite介绍与使用-CSDN博客 &#xff08;二&#xff09;什么是Vite——Vite 和 Webpack 区别&#xff0…

Springcloud可视化物联网智慧工地云SaaS平台源码 支持二开和私有化部署

智慧工地平台围绕建筑施工人、物、事的安全管理为核心&#xff0c;对应研发了劳务实名制、视频监控、扬尘监测、起重机械安全监测、安全帽监测等功能一体化管理的解决方案。 智慧工地是聚焦工程施工现场&#xff0c;紧紧围绕人、机、料、法、环等关键要素&#xff0c;综合运用物…

网络参考模型与标准协议(一)

OSI参考模型 OSI 模型(Open Systems Interconnection Model)&#xff0c;由国际化标准组织ISO (TheInternational Organization for Standardization )收录在ISO 7489标准中并于1984年发布。 OSI参考模型又被称为七层模型&#xff0c;由下至上依次为: 物理层: 在设备之间传输比…

外卖小程序系统:数字化时代餐饮业的技术奇迹

在当今数字化时代&#xff0c;外卖小程序系统正以其强大的技术背后支持&#xff0c;成为餐饮业务的一项奇迹。这个系统不仅提供了便捷的点餐体验&#xff0c;更通过先进的技术手段&#xff0c;实现了高效订单处理、智能推荐以及实时配送追踪。下面&#xff0c;我们将深入探讨外…

【Python】问题描述:输入A、B,输出A+B。样例输入12 45样例输出57

1、问题描述 输入A、B&#xff0c;输出AB。 样例输入 12 45 样例输出 57 nums list(map(int,input().split(" "))) print(sum(nums))

单链表相关面试题--7.链表的回文结构

/* 解题思路&#xff1a; 此题可以先找到中间节点&#xff0c;然后把后半部分逆置&#xff0c;最近前后两部分一一比对&#xff0c;如果节点的值全部相同&#xff0c;则即为回文。 */ class PalindromeList { public:bool chkPalindrome(ListNode* A) {if (A NULL || A->ne…

【2023云栖】陈守元:阿里云开源大数据产品年度发布

本文根据 2023 云栖大会演讲实录整理而成&#xff0c;演讲信息如下&#xff1a; 演讲人&#xff1a;陈守元 | 阿里云计算平台事业部开源大数据产品总监 演讲主题&#xff1a;阿里云开源大数据产品年度发布 随着云计算的不断发展&#xff0c;未来数据处理和应用的趋势将围绕C…

C++数据结构:并查集

目录 一. 并查集的概念 二. 并查集的模拟实现 2.1 并查集类的声明 2.2 并查集的实现 三. 路径压缩 四. 总结 一. 并查集的概念 在生活中&#xff0c;我们经常需要对某一些事物进行归类处理&#xff0c;即&#xff1a;将N个不同的元素划分为几个互不相交的集合。在初始状态…

SpringCloud微服务通信两种方式Feign和Dubbo:Feign基本使用、自定义配置、使用优化;Dubbo基本实现

RestTemplate存在的问题 代码可读性差&#xff0c;编程体验不统一参数复杂&#xff0c;URL难以维护 Feign远程调用 Feign简介 ​ Feign是SpringCloud提供的一个声明式的伪Http客户端&#xff0c;它使得调用远程服务就像调用本地服务一样简单&#xff0c;只需要创建一个接口…

指针变量和地址

A.指针变量和地址 理解了内存和地址的关系&#xff0c;我们再回到C语⾔&#xff0c;在C语⾔中创建变量其实就是向内存申请空间&#xff0c;比如&#xff1a; #include <stdio.h> int main() {int a 10;return 0; } ⽐如&#xff0c;上述的代码就是创建了整型变量a&…

Android设计模式--责任链模式

无善无恶心之体&#xff0c;有善有恶意之动。知善知恶是良知&#xff0c;为善去恶是格物。 一&#xff0c;定义 使多个对象都有机会处理请求&#xff0c;从而避免了请求的发送者和接收者之间的耦合关系。将这些对象连成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;直…