YOLOv8改进 | EIoU、SIoU、WIoU、DIoU、FoucsIOU等二十余种损失函数

news2024/11/16 5:51:31

一、本文介绍

这篇文章介绍了YOLOv8的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的目标检测挑战进行优化。文章会详细探讨这些损失函数如何提高YOLOv8在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。本文章主要是为了发最近新出的Inner思想改进的各种EIoU的文章服务,其中我经过实验在绝大多数下的效果都要比本文中提到的各种损失效果要好。 

InnerIoU: YOLOv8改进 | 2023 | InnerIoU、InnerSIoU、InnerWIoU、Foucs等损失函数

专栏回顾: YOLOv8改进有效涨点专栏->持续复现各种最新机制

本位代码地址: 文末提供完整代码块-包括EIoU、CIoU、DIoU等七种损失和其Focus变种

目录

一、本文介绍

二、各种损失函数的基本原理 

2.1 交集面积和并集面积

2.2 IoU

2.3 SIoU

2.4 WioU

2.5 GIoU

2.6 DIoU

2.7 EIoU

2.8 CIoU

2.9 FocusLoss 

三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块

3.1 代码一

3.2 代码二 

四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中

五、总结


 二、各种损失函数的基本原理 

2.1 交集面积和并集面积

在理解各种损失函数之前我们需要先来理解一下交集面积和并集面积,在数学中我们都学习过集合的概念,这里的交集和并集的概念和数学集合中的含义是一样的。

2.2 IoU

论文地址:IoU Loss for 2D/3D Object Detectio

适用场景:普通的IoU并没有特定的适用场景

概念: 测量预测边界框和真实边界框之间的重叠度(最基本的边界框损失函数,后面的都是居于其进行计算)。

2.3 SIoU

论文地址:SIoU: More Powerful Learning for Bounding Box Regression

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。

概念: SIoU损失通过融入角度考虑和规模敏感性,引入了一种更为复杂的边界框回归方法,解决了以往损失函数的局限性,SIoU损失函数包含四个组成部分:角度损失、距离损失、形状损失和第四个未指定的组成部分。通过整合这些方面,从而实现更好的训练速度和预测准确性。

2.4 WioU

论文地址WIoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

适用场景:适用于需要动态调整损失焦点的情况,如不均匀分布的目标或不同尺度的目标检测。

概念:引入动态聚焦机制的IoU变体,旨在改善边界框回归损失。

2.5 GIoU

论文地址:GIoU: A Metric and A Loss for Bounding Box Regression

适用场景:适合处理有重叠和非重叠区域的复杂场景,如拥挤场景的目标检测。

概念: 在IoU的基础上考虑非重叠区域,以更全面评估边界框

2.6 DIoU

论文地址:DIoU: Faster and Better Learning for Bounding Box Regression

适用场景:适用于需要快速收敛和精确定位的任务,特别是在边界框定位精度至关重要的场景。

概念:结合边界框中心点之间的距离和重叠区域。

2.7 EIoU

论文地址:EIoU:Loss for Accurate Bounding Box Regression

适用场景:可用于需要进一步优化边界框对齐和形状相似性的高级场景。

概念:EIoU损失函数的核心思想在于提高边界框回归的准确性和效率。它通过以下几个方面来优化目标检测:

1. 增加中心点距离损失:通过最小化预测框和真实框中心点之间的距离,提高边界框的定位准确性。

2. 考虑尺寸差异:通过惩罚宽度和高度的差异,EIoU确保预测框在形状上更接近真实框。

3. 结合最小封闭框尺寸:将损失函数与包含预测框和真实框的最小封闭框的尺寸相结合,从而使得损失更加敏感于对象的尺寸和位置。

EIoU损失函数在传统IoU基础上增加了这些考量,以期在各种尺度上都能获得更精确的目标定位,尤其是在物体大小和形状变化较大的场景中。

2.8 CIoU

论文地址:CIoU:Enhancing Geometric Factors in Model Learning

适用场景:适合需要综合考虑重叠区域、形状和中心点位置的场景,如复杂背景或多目标跟踪。

概念:综合考虑重叠区域、中心点距离和长宽比。

2.9 FocusLoss 

论文地址:Focal Loss for Dense Object Detection

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。 

Focal Loss由Kaiming He等人在论文《Focal Loss for Dense Object Detection》中提出,旨在解决在训练过程中正负样本数量极度不平衡的问题,尤其是在一些目标检测任务中,背景类别的样本可能远远多于前景类别的样本。

Focal Loss通过修改交叉熵损失,增加一个调整因子这个因子降低了那些已经被正确分类的样本的损失值,使得模型的训练焦点更多地放在难以分类的样本上。这种方式特别有利于提升小目标或者在复杂背景中容易被忽视的目标的检测性能。简而言之,Focal Loss让模型“关注”(或“专注”)于学习那些对提高整体性能更为关键的样本。

三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块

3.1 代码一

此代码块块的基础版本来源于Github的开源版本,我在其基础上将Inner的思想加入其中形成了各种Inner的思想同时融合各种改良版本的损失函数形成对应版本的InnerIoU、InnerCIoU等损失函数。

import numpy as np
import torch, math

class WIoU_Scale:
    ''' monotonous: {
            None: origin v1
            True: monotonic FM v2
            False: non-monotonic FM v3
        }
        momentum: The momentum of running mean'''
    
    iou_mean = 1.
    monotonous = False
    _momentum = 1 - 0.5 ** (1 / 7000)
    _is_train = True

    def __init__(self, iou):
        self.iou = iou
        self._update(self)
    
    @classmethod
    def _update(cls, self):
        if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                         cls._momentum * self.iou.detach().mean().item()
    
    @classmethod
    def _scaled_loss(cls, self, gamma=1.9, delta=3):
        if isinstance(self.monotonous, bool):
            if self.monotonous:
                return (self.iou.detach() / self.iou_mean).sqrt()
            else:
                beta = self.iou.detach() / self.iou_mean
                alpha = delta * torch.pow(gamma, beta - delta)
                return beta / alpha
        return 1

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps
    if scale:
        self = WIoU_Scale(1 - (inter / union))

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha_ciou = v / (v - iou + (1 + eps))
                if Focal:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoU
                else:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = torch.pow(cw ** 2 + eps, alpha)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIou
                else:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou
            elif SIoU:
                # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
                s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
                s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                rho_x = (s_cw / cw) ** 2
                rho_y = (s_ch / ch) ** 2
                gamma = angle_cost - 2
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                if Focal:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIou
                else:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
            elif WIoU:
                if Focal:
                    raise RuntimeError("WIoU do not support Focal.")
                elif scale:
                    return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051
                else:
                    return iou, torch.exp((rho2 / c2)) # WIoU v1
            if Focal:
                return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoU
            else:
                return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        if Focal:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
        else:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    if Focal:
        return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoU
    else:
        return iou  # IoU

3.2 代码二 

代码块二此处是使用Focus时候需要修改的代码,如果不适用则不需要修改下面的代码,因为利用Focus机制时候返回的类型是元组所以需要额外的处理。 

        if type(iou) is tuple:
            if len(iou) == 2:
                # Focus Loss 时返回的是元组类型,进行额外处理
                loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum
            else:
                loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sum

        else:
            # 正常的损失函数
            loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中

添加的方法和基础版本的各种损失函数的方法是一样的,网上的教程已经满天飞了,考虑到大家有的人已经会了有的人还不会,所以这里提供我的另一篇博客里面包括YOLOv8改进C2f、Conv、Neck、损失函数、Bottleneck、检测头等各种YOLOv8能够改进的地方的详细过程讲解(里面会教会你如何使用上面的代码块一和代码块二)。所以如果你已经会了可以直接跳过此处,如果你还不会我建议你可以看下面的文章我相信能够帮助到你。

修改教程: YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

五、总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

本专栏其它内容(持续更新) 

YOLOv8改进 | DAttention (DAT)注意力机制实现极限涨点

YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

YOLOv8改进 | ODConv附修改后的C2f、Bottleneck模块代码

YOLOv8改进有效涨点系列->手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)

YOLOv8性能评估指标->mAP、Precision、Recall、FPS、IoU

YOLOv8改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)

 YOLOv8改进有效涨点系列->多位置替换可变形卷积(DCNv1、DCNv2、DCNv3) 

详解YOLOv8网络结构/环境搭建/数据集获取/训练/推理/验证/导出/部署

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1227244.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java--俄罗斯方块

一、先看一下游戏运行时的画面 二、代码部分 1. Cell.java Cell.java: package demo1;import java.awt.image.BufferedImage; import java.util.Objects;/* 编写小方块类属性:行、列、每个小方格的图片方法:左移一格、右移一格、下落一格 编…

快速支持客户知识库的核心优势是什么?

快速支持客户知识库是一个集中存储和组织企业知识的平台,包含了丰富的信息和解决方案,以帮助客户快速解决问题,帮助企业提高客户支持效率和满意度。那么,快速支持客户知识库的核心优势是什么呢? | 1、提高客户自助支持…

gitlab环境准备

1.准备环境 gitlab只支持linux系统,本人在虚拟机下使用Ubuntu作为操作系统,gitlab镜像要使用和操作系统版本对应的版本,(ubuntu18.04,gitlab-ce_13.2.3-ce.0_amd64 .deb) book100ask:/$ lsb_release -a No LSB modules are available. Dist…

2018年计网408

第33题 下列 TCP/P应用层协议中, 可以使用传输层无连接服务的是()A. FTPB. DNSC. SMTPD. HTTP 本题考察TCP/IP体系结构中,应用层常用协议所使用的运输层服务。 如图所示。这是TCP/IP体系结构中常见应用层协议各自所使用的运输层端口,。在这些应用层协议中&#x…

基于51单片机水位监测控制报警仿真设计( proteus仿真+程序+设计报告+讲解视频)

这里写目录标题 💥1. 主要功能:💥2. 讲解视频:💥3. 仿真💥4. 程序代码💥5. 设计报告💥6. 设计资料内容清单&&下载链接💥[资料下载链接:](https://doc…

苹果签名应用掉签频繁原因排查,以及如何避免

作为一个对iOS生态有着深厚理解的实用技术博主,我明白苹果签名应用掉签对我们的开发和使用带来的困扰。签名在苹果设备中扮演着至关重要的角色,它不仅确保了应用来源的合法性,也影响着应用的顺畅运行。 今天,我将和您一同探讨苹果…

贝锐蒲公英云AP,企业WiFi功能如何使用?

1. 功能介绍 基于WPA2-EAP安全认证技术,为企业提供了一套易用安全的企业无线网络,实现企业员工通过蒲公英客户端一键连接企业无线WiFi。自动分配一人一帐一密,无需配置证书或手动输入密码,减少沟通成本,方便快捷,提高…

02.接口隔离原则(Interface Segregation Principle)

一言 客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上。 为什么要有接口隔离原则 反例设计 反例代码 public class Segregation1 { }interface Interface1 {void operation1();void operation2();void operation3();void opera…

SpringBoot-AOP-基础到进阶

SpringBoot-AOP AOP基础 学习完spring的事务管理之后,接下来我们进入到AOP的学习。 AOP也是spring框架的第二大核心,我们先来学习AOP的基础。 在AOP基础这个阶段,我们首先介绍一下什么是AOP,再通过一个快速入门程序&#xff0c…

算法之冒泡排序

算法之冒泡排序 冒泡排序Bubble Sort 交换排序相邻元素两两比较大小,有必要则交换。元素越小或越大,就会在数列中慢慢的交换并“浮”向顶端,如同水泡咕嘟咕嘟往上冒。 核心算法 排序算法,一般都实现为就地排序,输出…

YARN,ZOOKEERPER--学习笔记

1,YARN组件 1.1YARN简介 YARN表示分布式资源调度,简单地说,就是:以分布式技术完成资源的合理分配,让MapReduce能高效完成计算任务。 YARN是Hadoop核心组件之一,用于提供分布式资源调度服务。 而在Hadoop …

LeetCode【13】罗马数字转整数

题目: 思路: 第十二题的逆运算,方法同理。需要注意的是IV、IX、XL、XC、CD、CM这六种特殊的情况。正常情况下每个字符找到对应的数值累加,这六种特殊字符都是左边的数值比右边的数值小。 这里以IV举例,IV对应数字是1和…

新材料工厂生产管理mes系统

万界星空科技新材料云MES系统从需求分析、产品选型、系统集成、可扩展性和灵活性以及安全性和稳定性等多个角度进行考虑。 如果您的企业也属于新材料生产制造行业,同时也计划通过MES系统来进行整个生产过程的数字化管控。 欢迎搜索万界星空科技线上咨询或者直接拨…

【深度学习实验】注意力机制(二):掩码Softmax 操作

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 理论介绍a. 认知神经学中的注意力b. 注意力机制: 1. 注意力权重矩阵可视化(矩阵热图)2. 掩码Softmax 操作a. 导入必要的库b. masked_softmaxc. 实验结果 ​ …

单线程的JS中Vue导致的“线程安全”问题

目录 现象分析原因 浏览器中Js是单线程的,当然不可能出现线程安全问题。只是遇到的问题的现象与多线程的情况十分相似,导致对不了解Vue实现的我怀疑起了人生… 现象 项目中用到了element-plus中的加载组件,简单封装了一下,用来保…

一、MySQL-Replication(主从复制)

1.1、MySQL Replication 主从复制(也称 AB 复制)允许将来自一个MySQL数据库服务器(主服务器)的数据复制到一个或多个MySQL数据库服务器(从服务器)。 根据配置,您可以复制数据库中的所有数据库&a…

男子遗失30万天价VERTU唐卡手机,警察2小时“光速”寻回

今天,一则“男子丢失30万元手机女子捡到一位老年机”的新闻迅速冲上热搜第一,引发全网热议。据宿城公安消息:近日,江苏省宿迁市市民王先生在购物时不慎失落了一部价值30万元的全球知名奢侈品VERTU手机,被民警2个多小时…

Linux驱动开发——块设备驱动

目录 一、 学习目标 二、 磁盘结构 三、块设备内核组件 四、块设备驱动核心数据结构和函数 五、块设备驱动实例 六、 习题 一、 学习目标 块设备驱动是 Linux 的第二大类驱动,和前面的字符设备驱动有较大的差异。要想充分理解块设备驱动,需要对系统…

两栏布局:左侧固定,右侧自适应

左侧宽度固定&#xff0c;右侧宽度自适应剩余空间 方法一&#xff1a;float margin 方法二&#xff1a;flex布局 相关HTML代码 <div class"container"><div class"left"></div><div class"main"></div> </d…

C++--哈希表--散列--冲突--哈希闭散列模拟实现

文章目录 哈希概念一、哈希表闭散列的模拟实现二、开散列(哈希桶)的模拟实现数据类型定义析构函数插入查找删除 哈希概念 unordered系列的关联式容器之所以效率比较高&#xff0c;是因为其底层使用了哈希结构。 顺序结构以及平衡树中&#xff0c;元素关键码与其存储位置之间没…