MongoDB之索引和聚合

news2024/11/19 16:37:07

文章目录

  • 一、索引
    • 1、说明
    • 2、原理
    • 3、相关操作
      • 3.1、创建索引
      • 3.2、查看集合索引
      • 3.3、查看集合索引大小
      • 3.4、删除集合所有索引(不包含_id索引)
      • 3.5、删除集合指定索引
    • 4、复合索引
  • 二、聚合
    • 1、说明
    • 2、使用
  • 总结


一、索引

1、说明

索引通常能够极大的提高查询的效率,如果没有索引,MongoDB在读取数据时必须扫描集合中的每个文件并选取那些符合查询条件的记录。这种扫描全集合的查询效率是非常低的,特别在处理大量的数据时,查询可以要花费几十秒甚至几分钟,这对网站的性能是非常致命的。索引是特殊的数据结构,索引存储在一个易于遍历读取的数据集合中,索引是对数据库表中一列或多列的值进行排序的一种结构。

2、原理

在这里插入图片描述
从根本上说,MongoDB中的索引与其他数据库系统中的索引类似。MongoDB在集合层面上定义了索引,并支持对MongoDB集合中的任何字段或文档的子字段进行索引。

默认_id已经创建了索引。

3、相关操作

3.1、创建索引

db.集合名称.createIndex(keys, options)
db.集合名称.createIndex({"title":1,"description":-1})

说明: 语法中 Key 值为你要创建的索引字段,1 为指定按升序创建索引,如果你想按降序来创建索引指定为 -1 即可。

createIndex() 接收可选参数,可选参数列表如下:

ParameterTypeDescription
backgroundBoolean建索引过程会阻塞其它数据库操作,background可指定以后台方式创建索引,即增加 “background” 可选参数。 “background” 默认值为false。
uniqueBoolean建立的索引是否唯一。指定为true创建唯一索引。默认值为false.
namestring索引的名称。如果未指定,MongoDB的通过连接索引的字段名和排序顺序生成一个索引名称。
sparseBoolean对文档中不存在的字段数据不启用索引;这个参数需要特别注意,如果设置为true的话,在索引字段中不会查询出不包含对应字段的文档.。默认值为 false.
expireAfterSecondsinteger指定一个以秒为单位的数值,完成 TTL设定,设定集合的生存时间。
vindex version索引的版本号。默认的索引版本取决于mongod创建索引时运行的版本。
weightsdocument索引权重值,数值在 1 到 99,999 之间,表示该索引相对于其他索引字段的得分权重。
default_languagestring对于文本索引,该参数决定了停用词及词干和词器的规则的列表。 默认为英语
language_overridestring对于文本索引,该参数指定了包含在文档中的字段名,语言覆盖默认的language,默认值为 language.

3.2、查看集合索引

db.集合名称.getIndexes()

3.3、查看集合索引大小

db.集合名称.totalIndexSize()

3.4、删除集合所有索引(不包含_id索引)

db.集合名称.dropIndexes() 

3.5、删除集合指定索引

db.集合名称.dropIndex("索引名称")

4、复合索引

说明: 一个索引的值是由多个 key 进行维护的索引的称之为复合索引

db.集合名称.createIndex({"title":1,"description":-1})

注意: mongoDB 中复合索引和传统关系型数据库一致都是左前缀匹配原则
在这里插入图片描述
在这里插入图片描述

二、聚合

1、说明

MongoDB 中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。有点类似 SQL 语句中的 count(*)。

2、使用

db.test.insertMany([
     {
        title: 'MongoDB Overview', 
        description: 'MongoDB is no sql database',
        by_user: 'runoob.com',
        url: 'http://www.runoob.com',
        tags: ['mongodb', 'database', 'NoSQL'],
        likes: 100
     },
     {
        title: 'NoSQL Overview', 
        description: 'No sql database is very fast',
        by_user: 'runoob.com',
        url: 'http://www.runoob.com',
        tags: ['mongodb', 'database', 'NoSQL'],
        likes: 10
     },
     {
        title: 'Neo4j Overview', 
        description: 'Neo4j is no sql database',
        by_user: 'Neo4j',
        url: 'http://www.neo4j.com',
        tags: ['neo4j', 'database', 'NoSQL'],
        likes: 750
     }
 ]);

现在我们通过以上集合计算每个作者所写的文章数,使用aggregate()计算结果如下:

db.test.aggregate([{$group : {
                      _id : "$by_user", 
                      num_tutorial : {$sum : 1}
 }}])

注意:此处的_id是分组表示,不是文档的 _id.

常见聚合表达式

表达式描述实例
$sum计算总和db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", num_tutorial : { s u m : " sum : " sum:"likes"}}}])
$avg计算平均值db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", num_tutorial : { a v g : " avg : " avg:"likes"}}}])
$min获取集合中所有文档对应值得最小值。db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", num_tutorial : { m i n : " min : " min:"likes"}}}])
$max获取集合中所有文档对应值得最大值。db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", num_tutorial : { m a x : " max : " max:"likes"}}}])
$push将值加入一个数组中,不会判断是否有重复的值。db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", url : { p u s h : " push: " push:"url"}}}])
$addToSet将值加入一个数组中,会判断是否有重复的值,若相同的值在数组中已经存在了,则不加入。db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", url : { a d d T o S e t : " addToSet : " addToSet:"url"}}}])
$first根据资源文档的排序获取第一个文档数据。db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", first_url : { f i r s t : " first : " first:"url"}}}])
$last根据资源文档的排序获取最后一个文档数据db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", last_url : { l a s t : " last : " last:"url"}}}])

总结

以上就是MongoDB之索引和聚合的相关知识点,希望对你有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1225897.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小美的树上染色

美团2024届秋招笔试第一场编程真题 先提一个小知识:题目中凡是提到树结构都要使用图的存储方式,只有二叉树例外。 分析:在树结构中,孩子和父节点是相邻节点,而父节点可能有多个孩子节点。在染色的过程中,…

Ubuntu20.04 安装微信 【wine方式安装】推荐

安装步骤: 第一步:安装 WineHQ 安装包 先安装wine,根据官网指导安装即可。下载 - WineHQ Wikihttps://wiki.winehq.org/Download_zhcn 如果您之前安装过来自其他仓库的 Wine 安装包,请在尝试安装 WineHQ 安装包之前删除它及依赖它的所有安装包(如:wine-mono、wine-gec…

PostgreSQL 难搞的事系列 --- vacuum 的由来与PG16的命令的改进 (1)

开头还是介绍一下群,如果感兴趣PolarDB ,MongoDB ,MySQL ,PostgreSQL ,Redis, Oceanbase, Sql Server等有问题,有需求都可以加群群内有各大数据库行业大咖,CTO,可以解决你的问题。加群请联系 liuaustin3 ,在新加的朋友…

《向量数据库指南》——什么是 向量数据库Milvus Cloud的Range Search?

Range Search 功能诞生于社区。 某天,一位做系统推荐的用户在社区提出了需求,希望 Milvus Cloud 能提供一个新功能,可以返回向量距离在一定范围之内的结果。而这不是个例,开发者在做相似性查询时,经常需要对结果做二次过滤。 为了帮助用户解决这一问题,Milvus Cl…

redis安装(Windows和linux)

如何实现Redis安装与使用的详细教程 Redis 简介 Redis是一个使用C语言编写的开源、高性能、非关系型的键值对存储数据库。它支持多种数据结构,包括字符串、列表、集合、有序集合、哈希表等。Redis的内存操作能力极强,其读写性能非常优秀,且…

英飞凌(Infineon)平台嵌入式开发基础

本篇文章介绍了基于英飞凌平台进行嵌入式开发的一些基础知识,首先介绍了涉及芯片的信息和常见的开发环境,把生硬的主体名称先分类并抛出来;然后着重介绍了英飞凌官网提供的开发资源,包括不限于开发环境,代码示例&#…

Spring学习②__IOC分析

目录 IOC控制反转IOCIOC理论案例IOC的思想(注入)IOC底层什么是 IOCIOC 底层原理 总结 IOC 控制反转IOC ①控制反转,把对象创建和对象之间的调用过程,交给Spring进行 ②使用IOC目的:为了耦合度降低 IOC理论案例 控制…

深度学习中对抗生成网络GAN背后的数学原理

引言 GAN的风暴席卷了整个深度学习圈子,任何任务似乎套上GAN的壳子,立马就变得高大上了起来。那么,GAN究竟是什么呢? GAN的主要应用目标: 生成式任务(生成、重建、超分辨率、风格迁移、补全、上采样等&a…

判断序列值是否单调递增 PandasSeries中的方法:is_monotonic_increasing

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 判断序列值是否单调递增 PandasSeries中的方法: is_monotonic_increasing 选择题 请问下列程序运行的的结果是: import pandas as pd s1 pd.Series([1, 2, 5]) prin…

linux如何使用Xshell远程连接

简介:本文的一切条件基于redhat的linux操作系统。 1、创建虚拟机: 如有需要,请转至【linux基础】在VMware上安装RHEL9详细教程_融社的博客-CSDN博客 (如若侵权,该篇立删) 2、使用命令查看网段信息 打…

ThreadLocal优化

测试类证明一下ThreadLocal存储的数据是线程程安全的 package com.lin.springboot01;import org.junit.jupiter.api.Test;public class testThreadLocal {Testpublic void testThreadLocalSetAndGet(){//提供一个ThreadLocal对象ThreadLocal t1 new ThreadLocal();new Thread…

复旦大学EMBA深度链接深圳科创产业:聚焦智联,产融未来

作为科创成就的经济大区,深圳南山区通过跨界创新研发生态链条,领跑科创产业创新,以187.5平方公里的面积,雄踞着204家上市公司,地均生产总值产出达到了40.7亿元,相当于每平方公里出产超过1家上市公司&#x…

openwrt配置ipv6

废话部分(可跳过) 历经多天,经过各种测试,终于把openwrt的ipv6配置成功了,这篇我将尽我所能详尽的描述一下可能遇到的问题和解决办法。这篇文章致力于让你完成整个openwrt的ipv6配置,希望对你有所帮助。在…

sentinel 网关

网关简介 大家都都知道在微服务架构中,一个系统会被拆分为很多个微服务。那么作为客户端要如何去调用这么多的微服务呢?如果没有网关的存在,我们只能在客户端记录每个微服务的地址,然后分别去调用。 这样的架构,会存在…

WinForms C# 导入和导出 CSV 文件 Spread.NET

使用 WinForms C# 和 VB.NET 导入和导出 CSV 文件 2023 年 11 月 17 日 使用 Spread.NET 直接在 .NET WinForms 应用程序中处理 CSV 文件。 Spread.NET可帮助您创建电子表格、网格、仪表板和表单。它包括一个强大的计算引擎,具有 450 多个函数以及导入和导出 Micros…

Django的可重用HTML模板示例

01-配置并运行Django项目 首先按照博文 https://blog.csdn.net/wenhao_ir/article/details/131166889配置并运行Django项目。 02-创建可重用模板文件 templates目录下新建目录common,然后在目录common下新建文件:navbar.html,并写入下面的…

火山引擎 ByteHouse 的增强型数据导入技术实践

作为企业数字化建设的必备要素,易用的数据引擎能帮助企业提升数据使用效率,更好提升数据应用价值,夯实数字化建设基础。 数据导入是衡量OLAP引擎性能及易用性的重要标准之一,高效的数据导入能力能够加速数据实时处理和分析的效率。…

【LLM】基于LLM的agent应用(更新中)

note 在未来,Agent 还会具备更多的可扩展的空间。 就 Observation 而言,Agent 可以从通过文本输入来观察来理解世界到听觉和视觉的集成;就 Action 而言,Agent 在具身智能的应用场景下,对各种器械进行驱动和操作。 Age…

maptalks三维地图网址

三维 地址: http://examples.maptalks.com/examples/cn/gltf/gltf-marker/shader

【漏洞复现】浙大恩特CRM文件上传0day

漏洞描述 浙大恩特客户资源管理系统任意文件上传漏洞 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和利益,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用…