深度学习中对抗生成网络GAN背后的数学原理

news2024/11/19 17:45:32

引言

GAN的风暴席卷了整个深度学习圈子,任何任务似乎套上GAN的壳子,立马就变得高大上了起来。那么,GAN究竟是什么呢?

GAN的主要应用目标:

生成式任务(生成、重建、超分辨率、风格迁移、补全、上采样等)

GAN的核心思想:生成器G和判别器D的一代代博弈

生成器:生成网络,通过输入生成图像

判别器:二分类网络,将生成器生成图像作为负样本,真实图像作为正样本

learn 判别器D:

给定G,通过G生成图像产生负样本,并结合真实图像作为正样本来训练D

learn 生成器G:

给定D,以使得D对G生成图像的评分尽可能接近正样本作为目标来训练G

G和D的训练过程交替进行,这个对抗的过程使得G生成的图像越来越逼真,D“打假”的能力也越来越强。

觉得不是很好理解嘛?别着急,慢慢往下看!


1 从极大似然估计说起

补充:
分布的表示:P(x)
表示该分布中采样到样本x的概率,试想如果我们知道该分布中每个样本的采样概率,那么这个分布也就可以以这种形式表示出来了。
确定分布的表示:P(x;𝜃)
其中𝜃表示该分布的参数,该分布的具体形式确定了(比如 P(x;𝜃) 可以是高斯分布,𝜃就是高斯分布的均值 µ和方差𝜌

先来介绍一下极大似然估计

1.1 极大似然估计要解决的问题

  • 给定一个数据分布 P_{data}(x)

  • 给定一个由参数𝜃定义的数据分布 P_G(x;\theta )

  • 我们希望求得参数𝜃使得 P_G(x;\theta )尽可能接近P_{data}(x)

可以理解成:

P_G(x;\theta )是某一具体的分布(比如简单的高斯分布),而 P_{data}(x)

是未知的(或者及其复杂,我们很难找到一个方式表示它),我们希望通过极大似然估计的方法来确定𝜃 ,让 P_G(x;\theta )能够大体表达P_{data}(x) 。

1.2 极大似然估计的解决方案

  1. 从 P_{data}(x) 采样m个样本 \left \{ x^1,x^2,x^3,\cdot \cdot \cdot x^m \right \}

  2. 计算采样样本的似然函数 L = \displaystyle \prod \limits_{i=1}^{m} P_G(x^i;\theta )

  3. 计算使得似然函数 L 最大的参数𝜃 : 

    图片

 这里再啰嗦一下极大似然估计为什么要这么做:

 P_{data}(x)可以理解成是非常复杂的分布,不可能用某个数学表达精确表示,因此我们只能通过抽象,使用一个具体的分布模型 P_G(x;\theta ) 近似 P_{data}(x)

所以,求 P_G(x;\theta ) 的参数 𝜃的策略就变成了:
我们认为来自 P_{data}(x) 的样本 \left \{ x^1,x^2,x^3,\cdot \cdot \cdot x^m \right \} 在 P_G(x;\theta )  分布中出现的概率越高,也就是 L = \displaystyle \prod \limits_{i=1}^{m} P_G(x^i;\theta ) 越大, P_G(x;\theta )  和   P_{data}(x) 就越接近。
因此,我们期待的𝜃就是使得 L = \displaystyle \prod \limits_{i=1}^{m} P_G(x^i;\theta ) 最大的𝜃.
即: 

图片

咱们继续推导:

图片

关于最后一步:

因为我们求取的是𝜃 ,而式一 \int _x P_{data}(x)logP_{data}(x)dx与𝜃无关,因此加上这一项并不影响等式。

加上这一项是为了后面的推导,把极大似然函数的式子化简成KL散度的表达式

(公式推导接上)

图片

KL散度:
KL(P||Q) 衡量P,Q这两个概率分布差异的方式:

图片

1.3 极大似然估计的本质

找到𝜃 使得 P_G(x;\theta ) 与目标分布 P_{data}(x) 的KL散度尽可能低,也就是使得两者的分布尽可能接近,实现用确定的分布P_G(x;\theta ) 极大似然 P_{data}(x)

2 GAN的基本思想

2.1 生成器:有问题?试试神经网络!

GAN的主要应用是集中在生成

本质就是在做一个极大似然估计的事情,我们希望可以用某一种具体的分布形式 P_G(x;\theta ) 尽可能逼真地表达分布 P_{data}(x)  ,这样我们就相当于是得到了 P_{data}(x) ,并据此分布 P_G(x;\theta ) 采样(也就是做生成式的任务):

  1. 确定具体分布的形式 P_G(x;\theta ) 

  2. 极大似然估计求得𝜃.我们认为我们可以使用 P_G(x;\theta ) 近似表达 P_{data}(x)  

  3. 基于 P_G(x;\theta ) 采样做生成

那么最直接的想法:  P_G(x;\theta ) 直接用高斯分布模型,但是高斯分布的capacity太弱了,不能很有效地推广至去拟合各种差异很大地目标图像分布

想要得到更general的 P_G(x;\theta ) ,为什么不考虑使用具有强大拟合能力的神经网络来做呢???!!!

我们不妨设计一个神经网络G来得到更general的 P_G(x;\theta ) ,大概的结构图如下:

图片

解释一下:

整体pipeline:

  1. 我们先选取一个简单的先验分布 P_{prior},并从该先验分布中采样z作为输入,输入到神经网络G,得 G(z)= x 生成图像 x .我们通过这种方式构建了生成分布  P_G(x;\theta ) 。此时该分布主要由神经网络G决定,参数𝜃由网络参数定义.我们可以通过输入z来在该分布上采样 x .

  2. 我们的目标是 P_{data}(x),我们希望我们构建的 P_G(x;\theta ) 与它尽可能接近。我们无法获得 P_{data}(x)的具体表达形式,我们只能获得它的样本。

  3. 类似极大似然估计,我们通过比较两个分布样本的差异设计loss来调节优化神经网络G的参数𝜃,从而实现将分布 P_G 向 P_{data} 拉近,从而达到用 P_G 拟合表达 P_{data} 的效果。

P_{prior}表示一个先验分布,我们生成图像 x 需要输入的code z 就是服从这个先验分布的。这个先验分布比如可以是:高斯分布

图片

指示函数 I_{\left [ G(z;\theta ) == x \right ]} 表示当 [] 内的条件为真时取值为1,为假时取值为0

也就是说分布 P_G 采样 x 的概率是所有能够使得 G(z;\theta ) == x 成立的z出现的概率之和,而z在这里是符合先验分布 P_{prior}(z) 的。

显然, P_G(x;\theta ) 的计算是非常困难的。

然而, P_G(x;\theta ) 的计算又是非常必要的,因为我们需要验证  P_G(x;\theta ) 在不断靠近 P_{data}(x) .

现在这种情况使用极大似然估计根本无从下手啊!!!

那么现在,GAN来了!!!

2.2 判别器:有问题?GAN来了!

GAN由生成器G和判别器D组成。

其实上面我们已经基本介绍了生成器G的由来了,并且我们遇到了一个问题:  P_G(x;\theta ) 极其复杂的计算方式导致使用极大似然估计根本无从下手啊!!!

为了解决这个问题,我们引入了判别器D!

现在GAN的结构就完备了!!

对于生成器G:

  1. G 是一个函数,输入 z ~ P_{prior} ,输出(上面已经介绍了)x ~ P_G

  2. 先验分布 P_{prior},  P_{prior} 和G共同决定的分布 P_G对于判别器D:

  3. D是一个函数,输入 x ~ P_G ,输出一个scalar

  4. D用于评估 P_G(x;\theta ) 和  P_{data}(x) 之间的差异(解决上一小节提出的问题)

那么,GAN的最终目标-->用符号化语言表示就是:

图片

我们的目标是得到使得式子 max_D \,\,V(G,D) 最小的生成器 G^*.

关于V:

图片

给定G, max_D \,\,V(G,D)  衡量的就是分布 P_G 和 P_{data} 的差异。

因此,arg\,\, min_G \,\,max_D \,\,V(G,D) 也就是我们需要的使得差异最小的 G .

详细解释 V(G,D) :

对于 max_D \,\,V(G,D) ​​​​​​:

固定G ,最优 D^* 最大化:

图片

假设D(x) 可以表达任何函数

此时再固定 x ,则对于 P_{data}(x)logD(x)+P_G(x)log(1-D(x)),我们可将其看成是关于D的函数: f(D)=a \,logD+b \,log(1-D)

图片

解得

图片

即:

图片

则此时对于原式 V(G,D) (将 D^* 代入):

图片

JSD表示JS散度,它是KL散度的一种变形,也表示两个分布之间的差异: 

图片

与KL散度不同,JS散度是对称的。 

以上的公式推导,证明了  max_D \,\,V(G,D) 确实是衡量了 P_{data}(x) 和 P_G(x) 之间的差异。

图片

此时,最优的G:

图片

也就是使得 JSD(P_{data}(x) \left | \right | P_G(x)) 最小的G

图片

当 JSD(P_{data}(x) \left | \right | P_G(x)) = 0 时,表示两个分布完全相同。

对于 G^* = arg \,\, min_G \,\, max_D \,\, V(G,D) ,令 L(G)=max_D \,\, V(G,D)=V(G,D^*)

我们该如何优化从而获得 G^* 呢???

我们希望通过最小化损失函数L(G) ,找到最优的G。

这一步可以通过梯度下降实现:

图片

具体算法参考:

第一代:

  1. 给定 G_0 (随机初始化)

  • 确定 D^*_0 使得 V(G_0,D)  最大。此时 V(G_0,D^*_0) , 表示 P_{data}(x) 和 P_{G_0}(x) 的JS散度

  • 梯度下降:\theta _G \leftarrow \theta _G -\eta \frac{\partial V(G,D^*_0)}{\partial \theta _G} .得到 G_1

第二代:

2. 给定 G_1

  • 确定 D^*_1 使得 V(G_1,D) 最大。此时 V(G_1,D^*_1) , 表示 P_{data}(x) 和 P_{G_1}(x) 的JS散度

  • 梯度下降:\theta _G \leftarrow \theta _G -\eta \frac{\partial V(G,D^*_1)}{\partial \theta _G} .得到 G_2 

 。。。

后面的依此类推

以上算法有一个问题:如何确定 D^* 使得 V(D,G) 最大???

也就是:给定 G,如何计算 arg \,\, max_D \,\, V(G,D) 

回答:

从 P_{data}(x) 采样 \left \{ x^1,x^2,x^3,\cdot \cdot \cdot x^m \right \}

从 P_G(x) 采样 \left \{ \tilde{x^1}, \tilde{x^2},\cdot \cdot \cdot \tilde{x^m} \right \} 

因此我们可以将 max_D \,\, V(G,D) 从期望值计算改写为对样本计算(近似估计):

图片

这很自然地让我们想到二分类问题中常使用的交叉熵loss

因此,我们不妨联想:

D是一个二分类器,参数是 \theta _D 来自  P_{data}(x) 的采样 \left \{ x^1,x^2,x^3,\cdot \cdot \cdot x^m \right \} 作为正样本

来自 P_G(x) 的采样 \left \{ \tilde{x^1}, \tilde{x^2},\cdot \cdot \cdot \tilde{x^m} \right \} 作为负样本

那么此时,我们就将问题转化成了一个二分类问题:

交叉熵loss大 --> P_{data} 和 P_G JS散度小

交叉熵loss小 --> P_{data} 和 P_G JS散度大

此时,D就是可以使用一个神经网络作为二分类器,那么确定D,也就是可以使用梯度下降来优化获得D的最终参数。

GAN的最终算法流程:

初始化参数 \theta _D(for D)和 \theta _G(for G)

对于训练的每一轮:

第一部分 学习优化判别器D:

  • 从 P_{data}(x) 采样 \left \{ x^1,x^2,x^3,\cdot \cdot \cdot x^m \right \}

  • 从 P_{prior}(z) 采样 \left \{ z^1,z^2,z^3,\cdot \cdot \cdot z^m \right \} 

  • 通过生成器 \tilde{x^i}=G(z^i) 获得生成样本 \left \{ \tilde{x^1}, \tilde{x^2},\cdot \cdot \cdot \tilde{x^m} \right \} 

  • 梯度下降更新 \theta _D来最大化 : 

    图片

    :

    图片

注:以上第一部分可以重复多次:此过程本质上是在测量两分布之间的JS散度

第二部分 学习优化生成器G:

  • 再从 P_{prior}(z) 采样另一组 \left \{ z^1,z^2,z^3,\cdot \cdot \cdot z^m \right \}  

  • 梯度下降更新 \theta _G 来最小化 : 

    图片

    :

    图片

     .实际上 \tilde{V} 第一项与G无关,梯度下降只需最小化

    图片

    即可。

注:以上过程仅一次

最后的话:

其实在GAN之前,就已经有Auto-Encoder,VAE这样的方法来使用神经网络做生成式任务了。

GAN的最大的创新就是在于非常精妙地引入了判别器,从样本的维度解决了衡量两个分布差异的问题。

这种生成器和判别器对抗学习的模式,也必将在各种生成式任务中发挥其巨大的威力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1225886.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

判断序列值是否单调递增 PandasSeries中的方法:is_monotonic_increasing

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 判断序列值是否单调递增 PandasSeries中的方法: is_monotonic_increasing 选择题 请问下列程序运行的的结果是: import pandas as pd s1 pd.Series([1, 2, 5]) prin…

linux如何使用Xshell远程连接

简介:本文的一切条件基于redhat的linux操作系统。 1、创建虚拟机: 如有需要,请转至【linux基础】在VMware上安装RHEL9详细教程_融社的博客-CSDN博客 (如若侵权,该篇立删) 2、使用命令查看网段信息 打…

ThreadLocal优化

测试类证明一下ThreadLocal存储的数据是线程程安全的 package com.lin.springboot01;import org.junit.jupiter.api.Test;public class testThreadLocal {Testpublic void testThreadLocalSetAndGet(){//提供一个ThreadLocal对象ThreadLocal t1 new ThreadLocal();new Thread…

复旦大学EMBA深度链接深圳科创产业:聚焦智联,产融未来

作为科创成就的经济大区,深圳南山区通过跨界创新研发生态链条,领跑科创产业创新,以187.5平方公里的面积,雄踞着204家上市公司,地均生产总值产出达到了40.7亿元,相当于每平方公里出产超过1家上市公司&#x…

openwrt配置ipv6

废话部分(可跳过) 历经多天,经过各种测试,终于把openwrt的ipv6配置成功了,这篇我将尽我所能详尽的描述一下可能遇到的问题和解决办法。这篇文章致力于让你完成整个openwrt的ipv6配置,希望对你有所帮助。在…

sentinel 网关

网关简介 大家都都知道在微服务架构中,一个系统会被拆分为很多个微服务。那么作为客户端要如何去调用这么多的微服务呢?如果没有网关的存在,我们只能在客户端记录每个微服务的地址,然后分别去调用。 这样的架构,会存在…

WinForms C# 导入和导出 CSV 文件 Spread.NET

使用 WinForms C# 和 VB.NET 导入和导出 CSV 文件 2023 年 11 月 17 日 使用 Spread.NET 直接在 .NET WinForms 应用程序中处理 CSV 文件。 Spread.NET可帮助您创建电子表格、网格、仪表板和表单。它包括一个强大的计算引擎,具有 450 多个函数以及导入和导出 Micros…

Django的可重用HTML模板示例

01-配置并运行Django项目 首先按照博文 https://blog.csdn.net/wenhao_ir/article/details/131166889配置并运行Django项目。 02-创建可重用模板文件 templates目录下新建目录common,然后在目录common下新建文件:navbar.html,并写入下面的…

火山引擎 ByteHouse 的增强型数据导入技术实践

作为企业数字化建设的必备要素,易用的数据引擎能帮助企业提升数据使用效率,更好提升数据应用价值,夯实数字化建设基础。 数据导入是衡量OLAP引擎性能及易用性的重要标准之一,高效的数据导入能力能够加速数据实时处理和分析的效率。…

【LLM】基于LLM的agent应用(更新中)

note 在未来,Agent 还会具备更多的可扩展的空间。 就 Observation 而言,Agent 可以从通过文本输入来观察来理解世界到听觉和视觉的集成;就 Action 而言,Agent 在具身智能的应用场景下,对各种器械进行驱动和操作。 Age…

maptalks三维地图网址

三维 地址: http://examples.maptalks.com/examples/cn/gltf/gltf-marker/shader

【漏洞复现】浙大恩特CRM文件上传0day

漏洞描述 浙大恩特客户资源管理系统任意文件上传漏洞 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和利益,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用…

表白墙/留言墙 —— 中级SpringBoot项目,MyBatis技术栈MySQL数据库开发,练手项目前后端开发(带完整源码) 全方位全步骤手把手教学

🧸欢迎来到dream_ready的博客,📜相信你对这篇博客也感兴趣o (ˉ▽ˉ;) 📜表白墙/留言墙初级Spring Boot项目(此篇博客的简略版,不带MyBatis数据库开发) 目录 1、项目前端页面及项目…

C/C++ 运用WMI接口查询系统信息

Windows Management Instrumentation(WMI)是一种用于管理和监视Windows操作系统的框架。它为开发人员、系统管理员和自动化工具提供了一种标准的接口,通过这个接口,可以获取有关计算机系统硬件、操作系统和应用程序的信息&#xf…

nodejs微信小程序-利康药房管理系统的设计与实现- 安卓-python-PHP-计算机毕业设计

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

【Redux】Redux 基本使用

1. Redux 快速上手 Redux 是 React 最常用的集中状态管理工具&#xff0c;类似于Vue中的Pinia&#xff08;Vuex&#xff09;&#xff0c;可以独立于框架运行。 <button id"decrement">-</button> <span id"count">0</span> <…

2023年汉字小达人市级比赛在线模拟题更新:40分钟150题完整对标

今天是2023年11月19日&#xff0c;距离11月30日的汉字小达人市级比赛还有11天。许多孩子正在利用难得的周末抓紧练习和备赛。 结合一些孩子的反馈和需求&#xff0c;我把150题的在线模拟题做了更新&#xff0c;增加了前面的个人信息填写的部分&#xff0c;并且把整个试卷的完成…

SpringSecurity5|12.实现RememberMe 及 实现原理分析

security/day08 这个功能大家还熟悉么&#xff1f;我们在登录网站的时候&#xff0c;除了让你输入用户名和密码&#xff0c;还会有个勾选框&#xff1a; 记住我&#xff01;&#xff01;&#xff01;不是让大家记住我哈。 值得一提的是&#xff0c;Spring Security 也提供了这个…

从0开始学习JavaScript--JavaScript 数字与日期

JavaScript中的数字和日期是处理数值计算和时间相关任务的核心。本文将深入研究JavaScript中数字的表示、常见运算&#xff0c;以及日期对象的创建、格式化等操作&#xff0c;并通过丰富的示例代码&#xff0c;可以更全面地了解和应用这些概念。 JavaScript数字基础 JavaScri…

多线程Thread(初阶一:认识线程)

目录 一、引用线程的原因 二、线程的概念 三、进程和线程的区别 四、多线程编程 一、引用线程的原因 多任务操作系统&#xff0c;希望系统能同时运行多个任务。所以会涉及到进程&#xff0c;需要对进程进行管理、调度等。 而单任务操作系统&#xff0c;就完全不涉及到进程…