动手学深度学习——循环神经网络的简洁实现(代码详解)

news2024/12/26 22:48:45

文章目录

    • 循环神经网络的简洁实现
      • 1. 定义模型
      • 2. 训练与预测

循环神经网络的简洁实现

# 使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型
import torch 
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

1. 定义模型

构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer

# 构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer
num_hiddens =256
rnn_layer = nn.RNN(len(vocab), num_hiddens)

使用张量初始化状态,形状为(隐藏层数,批量大小,隐藏单元数)

# 使用张量初始化状态,形状为(隐藏层数,批量大小,隐藏单元数)
state = torch.zeros((1, batch_size, num_hiddens))
state.shape

在这里插入图片描述
通过一个隐状态和一个输入,可以用更新后的隐状态计算输出。

# 通过一个隐状态和一个输入,可以用更新后的隐状态计算输出。
# rnn_layer的“输出”(Y)不涉及输出层的计算: 它是指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。
X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape

在这里插入图片描述为一个完整的循环神经网络模型定义了一个RNNModel类,rnn_layer只包含隐藏的循环层,我们还需要创建一个单独的输出层。

# 为一个完整的循环神经网络模型定义了一个RNNModel类
# rnn_layer只包含隐藏的循环层,我们还需要创建一个单独的输出层
#save
class RNNModel(nn.Module):
    """循环神经网络模型"""
    def __init__(self, rnn_layer, vocab_size, **kwargs):
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
        
    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        Y, state = self.rnn(X, state)
        # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
        # 它的输出形状是(时间步数*批量大小,词表大小)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state
        
        
    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return torch.zeros((self.num_directions * self.rnn.num_layers, 
                               batch_size, self.num_hiddens), 
                              device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers, 
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                    self.num_directions * self.rnn.num_layers,
                    batch_size, self.num_hiddens), device=device))

2. 训练与预测

在训练模型之前,基于一个具有随机权重的模型进行预测。

# 在训练模型之前,基于一个具有随机权重的模型进行预测。
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)

在这里插入图片描述
使用之前的超参数调用train_ch8,并且使用高级API训练模型

# 使用之前的超参数调用train_ch8,并且使用高级API训练模型
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1224243.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决docker运行elastic服务端启动不成功

现象: 然后查看docker日志,发现有vm.max_map_count报错 ERROR: [1] bootstrap checks failed [1]: max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144] 解决办法: 1. 宿主机(运行doc…

【springboot笔记】程序可用性检测ApplicationAvailability

1.背景 springboot-3.1.5 ApplicationAvailability LivenessState ReadinessState AvailabilityChangeEvent 我们可以通过ApplicationAvailability获取当前应用程序的可用性,这个可用性包括ApplicationContext和对外请求路由两种。 LivenessState 是表示Applicatio…

【C++】类与对象 II 【深入浅出 万字详解】

类与对象 II 一、类的6个默认成员函数二、构造函数前言:构造函数产生的由来 及引入C语言中关于初始化会出现的问题总结:(一)构造函数的 概念(二)构造函数的 特性★ 构造函数 和 函数声明 的区分 三、析构函…

数学建模 | 灰色预测原理及python实现

目录 一、灰色预测的原理 二、灰色预测的应用及python实现 一、灰色预测的原理 灰色预测是以灰色模型为基础,灰色模型GM(n,h)是微分方程模型,可用于描述对象做长期、连续、动态的反应。其中,n代表微分方程式的阶数,h代表微分方…

下一代搜索引擎会什么?

现在是北京时间2023年11月18日。聊一聊搜索。 说到搜索,大家首先想到的肯定是谷歌,百度。我把这些定义成上一个时代的搜索引擎。ChatGPT已经火热了有一年的时间了,大家都认为Ai搜索是下一代的搜索。但是AI搜索,需要的是很大算力&a…

【动态规划】求解编辑距离问题

目录 问题描述递推关系运行实例时空复杂度优化Hirschberg 算法 问题描述 编辑距离问题是求解将⼀个字符串转换为另⼀个字符串所需的插⼊、删除、替换的最小次数。 C O M M O M → s u b C O M M U M → s u b C O M M U N → i n s C O M M U N E \mathbb{COMMOM} \overset{sub…

迪杰斯特拉算法(C++)

目录 介绍: 代码: 结果: 介绍: 迪杰斯特拉算法(Dijkstras algorithm)是一种用于计算加权图的单点最短路径的算法。它是由荷兰计算机科学家Edsger W. Dijkstra在1956年发明的。 该算法的思路是&#xf…

Confluence 快速安装教程

安装jdk yum install -y java-1.8.0-openjdk.x86_64 java -version 安装MySQL mkdir -p /data/mysql/data chmod 777 /data/mysql/datadocker rm -f mysql docker run -d --name mysql \-p 3306:3306 \-e MYSQL_ROOT_PASSWORDfingard1 \-v /data/mysql/data:/var/lib/mysql …

使用Pandas进行时间重采样,充分挖掘数据价值

大家好,时间序列数据蕴含着很大价值,通过重采样技术可以提升原始数据的表现形式。本文将介绍数据重采样方法和工具,提升数据可视化技巧。 在进行时间数据可视化时,数据重采样是至关重要且非常有用的,它支持控制数据的…

SQL 文本函数

前言 SQL文本函数是SQL语言中非常有用的一类函数,它们用于处理和操作字符串数据。在实际应用中,我们经常需要对数据库中的文本数据进行各种操作,比如提取子串、替换子串、拼接字符串等等。而SQL文本函数可以帮助我们轻松地完成这些任务&#…

SQL SERVER 2008安装教程

SQL SERVER 2008安装教程 本篇文章介绍了安装SQL Server 2008企业版的软硬件配置要求,安装过程的详细步骤,以及需要注意的事项。 安装步骤 (1). 在安装文件setup.exe上,单击鼠标右键选择“以管理员的身份运行”,如下图所示&#…

一文搞懂设计模式之代理模式

大家好,我是晴天,本周我们又见面了。本周有点发烧感冒,更文有点慢了,请大家见谅。言归正传,本周我们继续一起学习一文搞懂设计模式系列文章之代理模式。 什么是代理模式 我们先来看看 GoF 对代理模式的定义&#xff1…

HarmonyOS真机调试报错:INSTALL_PARSE_FAILED_USESDK_ERROR处理

1、 新建应用时选择与自己真机匹配的sdk版本 查看自己设备sdk版本 创建时先择匹配版本: 2、 根据报错提示连接打开处理方案 3、查询真机版本对应的compileSdkVersion 和 compatibleSdkVersion 提示3.1版本之后和3.1版本之前的不同命令(此处为3.0版…

Git企业开发级讲解(四)

📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、理解分⽀二、创建分支三、切换分⽀四、合并分⽀五、删除分⽀六、合并冲突七、分⽀管理策略…

轻量封装WebGPU渲染系统示例<34>-数据驱动之Json构建场景

场景和数据之间的互通: 场景数据化或者数据化场景,是当前的主流场景数据构成方式。方便传输方便交换甚至是交互。 内置数据互通机制更有利于用户在各种应用场合下实现具体的3D相关的应用需求。用户只需要关心标准的或者约定好的数据定义及操作方式就能方…

PostgreSQL 入门

文章目录 PostgreSQL介绍PostgreSQL和MySQL的区别PostgreSQL的安装PostgreSQL的配置远程连接配置配置数据库的日志 PostgreSQL基本操作用户操作权限操作 图形化界面安装总结 PostgreSQL介绍 PostgreSQL是一个功能强大的 开源 的关系型数据库,底层基于C实现。其开源…

Sam Altman 被罢免细节曝光,投资 100+ 公司或成「话柄」?

2022 年 11 月,ChatGPT 发布掀起 AI 狂潮。时隔 1 年,2023 年 11 月,ChatGPT 之父、Sam Altman 的一项人事巨变,再次掀起了一场 AI 界的风暴,只是这次并不是技术革命,而是 OpenAI 巨头换帅——Sam Altman 被…

YOLO目标检测——烟雾检测数据集下载分享【含对应voc、coco和yolo三种格式标签】

实际项目应用:烟雾检测数据集可用于监控烟雾情况,实现火灾的早期预警。数据集说明:烟雾检测数据集,真实场景的高质量图片数据,数据场景丰富,含烟雾1个类别标签说明:使用lableimg标注软件标注&am…

QtCreator开发环境的安装和配置

QtCreator开发环境的安装和配置 介绍下载与安装环境介绍示例新建工程示例程序 帮助模式Qt Designer(设计师)Qt Linguist(预言家)结论 介绍 Qt Creator是一个跨平台、完整的集成开发环境(IDE),专门用于Qt开发。它包含了完整的编辑器、调试器和…

数据结构 栈与队列详解!!

一.栈 关于内存中的栈和数据结构中的栈是不同的,本章着重讲的是数据结构的栈。 这是一张关于栈的表达图。从图中可以看出栈很像是一副卡牌,发牌时只能从上取出,即出栈。 而入栈则是像你出牌后,要把你出的牌压在上一张出的牌上面。…