基于Pytorch的从零开始的目标检测

news2024/10/6 1:40:56

引言

目标检测是计算机视觉中一个非常流行的任务,在这个任务中,给定一个图像,你预测图像中物体的包围盒(通常是矩形的) ,并且识别物体的类型。在这个图像中可能有多个对象,而且现在有各种先进的技术和框架来解决这个问题,例如 Faster-RCNN 和 YOLOv3。

本文讨论将讨论图像中只有一个感兴趣的对象的情况。这里的重点更多是关于如何读取图像及其边界框、调整大小和正确执行增强,而不是模型本身。目标是很好地掌握对象检测背后的基本思想,你可以对其进行扩展以更好地理解更复杂的技术。

本文中的所有代码都在下面的链接中:https://jovian.ai/aakanksha-ns/road-signs-bounding-box-prediction

问题陈述

给定一个由路标组成的图像,预测路标周围的包围盒,并识别路标的类型。这些路标包括以下四种:

· 红绿灯

· 停止

· 车速限制

· 人行横道

这就是所谓的多任务学习问题,因为它涉及执行两个任务: 1)回归找到包围盒坐标,2)分类识别道路标志的类型

图片

数据集

我使用了来自 Kaggle 的道路标志检测数据集,链接如下:https://www.kaggle.com/andrewmvd/road-sign-detection

它由877张图像组成。这是一个相当不平衡的数据集,大多数图像属于限速类,但由于我们更关注边界框预测,因此可以忽略不平衡。

加载数据

每个图像的注释都存储在单独的 XML 文件中。我按照以下步骤创建了训练数据集:

· 遍历训练目录以获得所有.xml 文件的列表。

· 使用xml.etree.ElementTree解析.xml文件。

· 创建一个由文件路径、宽度、高度、边界框坐标( xmin 、 xmax 、 ymin 、        ymax )和每个图像的类组成的字典,并将字典附加到列表中。

· 使用图像统计数据字典列表创建一个 Pandas 数据库。

def filelist(root, file_type):
    """Returns a fully-qualified list of filenames under root directory"""
    return [os.path.join(directory_path, f) for directory_path, directory_name, 
            files in os.walk(root) for f in files if f.endswith(file_type)]

def generate_train_df (anno_path):
    annotations = filelist(anno_path, '.xml')
    anno_list = []
    for anno_path in annotations:
        root = ET.parse(anno_path).getroot()
        anno = {}
        anno['filename'] = Path(str(images_path) + '/'+ root.find("./filename").text)
        anno['width'] = root.find("./size/width").text
        anno['height'] = root.find("./size/height").text
        anno['class'] = root.find("./object/name").text
        anno['xmin'] = int(root.find("./object/bndbox/xmin").text)
        anno['ymin'] = int(root.find("./object/bndbox/ymin").text)
        anno['xmax'] = int(root.find("./object/bndbox/xmax").text)
        anno['ymax'] = int(root.find("./object/bndbox/ymax").text)
        anno_list.append(anno)
    return pd.DataFrame(anno_list)

· 标签编码类列

#label encode target
class_dict = {'speedlimit': 0, 'stop': 1, 'crosswalk': 2, 'trafficlight': 3}
df_train['class'] = df_train['class'].apply(lambda x:  class_dict[x])

调整图像和边界框的大小

由于训练一个计算机视觉模型需要的图像是相同的大小,我们需要调整我们的图像和他们相应的包围盒。调整图像的大小很简单,但是调整包围盒的大小有点棘手,因为每个包围盒都与图像及其尺寸相关。

下面是调整包围盒大小的工作原理:

· 将边界框转换为与其对应的图像大小相同的图像(称为掩码)。这个掩码只有        0 表示背景,1 表示边界框覆盖的区域。

图片

图片

· 将掩码调整到所需的尺寸。

· 从调整完大小的掩码中提取边界框坐标。

def create_mask(bb, x):
    """Creates a mask for the bounding box of same shape as image"""
    rows,cols,*_ = x.shape
    Y = np.zeros((rows, cols))
    bb = bb.astype(np.int)
    Y[bb[0]:bb[2], bb[1]:bb[3]] = 1.
    return Y

def mask_to_bb(Y):
    """Convert mask Y to a bounding box, assumes 0 as background nonzero object"""
    cols, rows = np.nonzero(Y)
    if len(cols)==0: 
        return np.zeros(4, dtype=np.float32)
    top_row = np.min(rows)
    left_col = np.min(cols)
    bottom_row = np.max(rows)
    right_col = np.max(cols)
    return np.array([left_col, top_row, right_col, bottom_row], dtype=np.float32)

def create_bb_array(x):
    """Generates bounding box array from a train_df row"""
    return np.array([x[5],x[4],x[7],x[6]])

def resize_image_bb(read_path,write_path,bb,sz):
    """Resize an image and its bounding box and write image to new path"""
    im = read_image(read_path)
    im_resized = cv2.resize(im, (int(1.49*sz), sz))
    Y_resized = cv2.resize(create_mask(bb, im), (int(1.49*sz), sz))
    new_path = str(write_path/read_path.parts[-1])
    cv2.imwrite(new_path, cv2.cvtColor(im_resized, cv2.COLOR_RGB2BGR))
    return new_path, mask_to_bb(Y_resized)


#Populating Training DF with new paths and bounding boxes
new_paths = []
new_bbs = []
train_path_resized = Path('./road_signs/images_resized')
for index, row in df_train.iterrows():
    new_path,new_bb = resize_image_bb(row['filename'], train_path_resized, create_bb_array(row.values),300)
    new_paths.append(new_path)
    new_bbs.append(new_bb)
df_train['new_path'] = new_paths
df_train['new_bb'] = new_bbs

数据增强

数据增强是一种通过使用现有图像的不同变体创建新的训练图像来更好地概括我们的模型的技术。我们当前的训练集中只有 800 张图像,因此数据增强对于确保我们的模型不会过拟合非常重要。

对于这个问题,我使用了翻转、旋转、中心裁剪和随机裁剪。

这里唯一需要记住的是确保包围盒也以与图像相同的方式进行转换。

# modified from fast.ai
def crop(im, r, c, target_r, target_c): 
    return im[r:r+target_r, c:c+target_c]

# random crop to the original size
def random_crop(x, r_pix=8):
    """ Returns a random crop"""
    r, c,*_ = x.shape
    c_pix = round(r_pix*c/r)
    rand_r = random.uniform(0, 1)
    rand_c = random.uniform(0, 1)
    start_r = np.floor(2*rand_r*r_pix).astype(int)
    start_c = np.floor(2*rand_c*c_pix).astype(int)
    return crop(x, start_r, start_c, r-2*r_pix, c-2*c_pix)

def center_crop(x, r_pix=8):
    r, c,*_ = x.shape
    c_pix = round(r_pix*c/r)
    return crop(x, r_pix, c_pix, r-2*r_pix, c-2*c_pix)


def rotate_cv(im, deg, y=False, mode=cv2.BORDER_REFLECT, interpolation=cv2.INTER_AREA):
    """ Rotates an image by deg degrees"""
    r,c,*_ = im.shape
    M = cv2.getRotationMatrix2D((c/2,r/2),deg,1)
    if y:
        return cv2.warpAffine(im, M,(c,r), borderMode=cv2.BORDER_CONSTANT)
    return cv2.warpAffine(im,M,(c,r), borderMode=mode, flags=cv2.WARP_FILL_OUTLIERS+interpolation)

def random_cropXY(x, Y, r_pix=8):
    """ Returns a random crop"""
    r, c,*_ = x.shape
    c_pix = round(r_pix*c/r)
    rand_r = random.uniform(0, 1)
    rand_c = random.uniform(0, 1)
    start_r = np.floor(2*rand_r*r_pix).astype(int)
    start_c = np.floor(2*rand_c*c_pix).astype(int)
    xx = crop(x, start_r, start_c, r-2*r_pix, c-2*c_pix)
    YY = crop(Y, start_r, start_c, r-2*r_pix, c-2*c_pix)
    return xx, YY

def transformsXY(path, bb, transforms):
    x = cv2.imread(str(path)).astype(np.float32)
    x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)/255
    Y = create_mask(bb, x)
    if transforms:
        rdeg = (np.random.random()-.50)*20
        x = rotate_cv(x, rdeg)
        Y = rotate_cv(Y, rdeg, y=True)
        if np.random.random() > 0.5: 
            x = np.fliplr(x).copy()
            Y = np.fliplr(Y).copy()
        x, Y = random_cropXY(x, Y)
    else:
        x, Y = center_crop(x), center_crop(Y)
    return x, mask_to_bb(Y)


def create_corner_rect(bb, color='red'):
    bb = np.array(bb, dtype=np.float32)
    return plt.Rectangle((bb[1], bb[0]), bb[3]-bb[1], bb[2]-bb[0], color=color,
                         fill=False, lw=3)

def show_corner_bb(im, bb):
    plt.imshow(im)
    plt.gca().add_patch(create_corner_rect(bb))

图片

PyTorch 数据集

现在我们已经有了数据增强,我们可以进行训练验证拆分并创建我们的 PyTorch 数据集。我们使用 ImageNet 统计数据对图像进行标准化,因为我们使用的是预训练的 ResNet 模型并在训练时在我们的数据集中应用数据增强。

X_train, X_val, y_train, y_val = train_test_split(X, Y, test_size=0.2, random_state=42)

def normalize(im):
    """Normalizes images with Imagenet stats."""
    imagenet_stats = np.array([[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]])
    return (im - imagenet_stats[0])/imagenet_stats[1]
class RoadDataset(Dataset):
    def __init__(self, paths, bb, y, transforms=False):
        self.transforms = transforms
        self.paths = paths.values
        self.bb = bb.values
        self.y = y.values
    def __len__(self):
        return len(self.paths)
    
    def __getitem__(self, idx):
        path = self.paths[idx]
        y_class = self.y[idx]
        x, y_bb = transformsXY(path, self.bb[idx], self.transforms)
        x = normalize(x)
        x = np.rollaxis(x, 2)
        return x, y_class, y_bb
train_ds = RoadDataset(X_train['new_path'],X_train['new_bb'] ,y_train, transforms=True)
valid_ds = RoadDataset(X_val['new_path'],X_val['new_bb'],y_val)
batch_size = 64
train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
valid_dl = DataLoader(valid_ds, batch_size=batch_size)

PyTorch 模型

对于这个模型,我使用了一个非常简单的预先训练的 resNet-34模型。由于我们有两个任务要完成,这里有两个最后的层: 包围盒回归器和图像分类器。

class BB_model(nn.Module):
    def __init__(self):
        super(BB_model, self).__init__()
        resnet = models.resnet34(pretrained=True)
        layers = list(resnet.children())[:8]
        self.features1 = nn.Sequential(*layers[:6])
        self.features2 = nn.Sequential(*layers[6:])
        self.classifier = nn.Sequential(nn.BatchNorm1d(512), nn.Linear(512, 4))
        self.bb = nn.Sequential(nn.BatchNorm1d(512), nn.Linear(512, 4))
        
    def forward(self, x):
        x = self.features1(x)
        x = self.features2(x)
        x = F.relu(x)
        x = nn.AdaptiveAvgPool2d((1,1))(x)
        x = x.view(x.shape[0], -1)
        return self.classifier(x), self.bb(x)

训练

对于损失,我们需要同时考虑分类损失和边界框回归损失,因此我们使用交叉熵和 L1 损失(真实值和预测坐标之间的所有绝对差之和)的组合。我已经将 L1 损失缩放了 1000 倍,因为分类和回归损失都在相似的范围内。除此之外,它是一个标准的 PyTorch 训练循环(使用 GPU):

def update_optimizer(optimizer, lr):
    for i, param_group in enumerate(optimizer.param_groups):
        param_group["lr"] = lr


def train_epocs(model, optimizer, train_dl, val_dl, epochs=10,C=1000):
    idx = 0
    for i in range(epochs):
        model.train()
        total = 0
        sum_loss = 0
        for x, y_class, y_bb in train_dl:
            batch = y_class.shape[0]
            x = x.cuda().float()
            y_class = y_class.cuda()
            y_bb = y_bb.cuda().float()
            out_class, out_bb = model(x)
            loss_class = F.cross_entropy(out_class, y_class, reduction="sum")
            loss_bb = F.l1_loss(out_bb, y_bb, reduction="none").sum(1)
            loss_bb = loss_bb.sum()
            loss = loss_class + loss_bb/C
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            idx += 1
            total += batch
            sum_loss += loss.item()
        train_loss = sum_loss/total
        val_loss, val_acc = val_metrics(model, valid_dl, C)
        print("train_loss %.3f val_loss %.3f val_acc %.3f" % (train_loss, val_loss, val_acc))
    return sum_loss/total


def val_metrics(model, valid_dl, C=1000):
    model.eval()
    total = 0
    sum_loss = 0
    correct = 0 
    for x, y_class, y_bb in valid_dl:
        batch = y_class.shape[0]
        x = x.cuda().float()
        y_class = y_class.cuda()
        y_bb = y_bb.cuda().float()
        out_class, out_bb = model(x)
        loss_class = F.cross_entropy(out_class, y_class, reduction="sum")
        loss_bb = F.l1_loss(out_bb, y_bb, reduction="none").sum(1)
        loss_bb = loss_bb.sum()
        loss = loss_class + loss_bb/C
        _, pred = torch.max(out_class, 1)
        correct += pred.eq(y_class).sum().item()
        sum_loss += loss.item()
        total += batch
    return sum_loss/total, correct/total

model = BB_model().cuda()
parameters = filter(lambda p: p.requires_grad, model.parameters())
optimizer = torch.optim.Adam(parameters, lr=0.006)


train_epocs(model, optimizer, train_dl, valid_dl, epochs=15)

测试

现在我们已经完成了训练,我们可以选择一个随机图像并在上面测试我们的模型。尽管我们只有相当少量的训练图像,但是我们最终在测试图像上得到了一个相当不错的预测。

使用手机拍摄真实照片并测试模型将是一项有趣的练习。另一个有趣的实验是不执行任何数据增强并训练模型并比较两个模型。


# resizing test image
im = read_image('./road_signs/images_resized/road789.png')
im = cv2.resize(im, (int(1.49*300), 300))
cv2.imwrite('./road_signs/road_signs_test/road789.jpg', cv2.cvtColor(im, cv2.COLOR_RGB2BGR))


# test Dataset
test_ds = RoadDataset(pd.DataFrame([{'path':'./road_signs/road_signs_test/road789.jpg'}])['path'],pd.DataFrame([{'bb':np.array([0,0,0,0])}])['bb'],pd.DataFrame([{'y':[0]}])['y'])
x, y_class, y_bb = test_ds[0]

xx = torch.FloatTensor(x[None,])
xx.shape


# prediction
out_class, out_bb = model(xx.cuda())
out_class, out_bb

图片

总结

现在我们已经介绍了目标检测的基本原理,并从头开始实现它,您可以将这些想法扩展到多对象情况,并尝试更复杂的模型,如 RCNN 和 YOLO!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1221847.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

物联网AI MicroPython学习之语法UART通用异步通信

学物联网,来万物简单IoT物联网!! UART 介绍 模块功能: UART通过串行异步收发通信 接口说明 UART - 构建UART对象 函数原型:UART(id, baudrate,bits, parity,stop, tx, rx)参数说明: 参数类…

Ubuntu22.04 Apache2安装SSL证书 https

一、免费证书申请 https://help.aliyun.com/zh/ssl-certificate/user-guide/overview-of-free-certificates 得到 三、配置 执行以下命令,打开default-ssl.conf文件。 vim /etc/apache2/sites-available/default-ssl.conf 在default-ssl.conf配置文件中&#xff…

Docker与Kubernetes结合的难题与技术解决方案

文章目录 1. **版本兼容性**技术解决方案 2. **网络通信**技术解决方案 3. **存储卷的管理**技术解决方案 4. **安全性**技术解决方案 5. **监控和日志**技术解决方案 6. **扩展性与自动化**技术解决方案 7. **多集群管理**技术解决方案 结语 🎈个人主页&#xff1a…

C# 实现腾讯云多路直播流的云端混合录制

目录 应用场景 腾讯云直播和云点播 产品架构 混流显示示例 关键代码 API实现 小结 应用场景 在云考试或视频面试中,除了对考生、考官的实时音视频监控以防止作弊行为的发生以外,对直播流的音视频录制也尤为重要,可做为后期证据材料进…

MFA多因子认证

什么是多因子认证(MFA)?为什么需要MFA? 同义词 多因子认证或者多因素验证 [尤其是需要做等级保护测评的时候需要用到] 摘要 多因子认证MFA(Multi Factor Authentication)是一种安全认证过程,需…

【配置环境】VS Code怎么使用JavaScript的Mocha测试框架和Chai断言库

一,环境 Windows 11 家庭中文版,64 位操作系统, 基于 x64 的处理器VS Code 版本: 1.83.1 (user setup)Node.js 版本:20.9.0 二,安装背景 在运行测试用例时遇到 ReferenceError: describe is not defined 错误,网上搜寻…

信息系统项目管理师 第四版 第2章 信息技术发展

1.信息技术及其发展 1.1.计算机软硬件 程序是计算任务的处理对象和处理规则的描述、文档是为了便于了解程序所需的闸明性资料。来自P37 程序必须安装入机器内部才能工作,文档一般是给人看的,不一定安装入机器。来自P37 计算机的某些功能既可以由硬件…

【日常】爬虫技巧进阶:textarea的value修改与提交问题(以智谱清言为例)

序言 记录一个近期困扰了一些时间的问题。 我很喜欢在爬虫中遇到问题,因为这意味着在这个看似简单的事情里还是有很多值得去探索的新东西。其实本身爬虫也是随着前后端技术的不断更新在进步的。 文章目录 序言Preliminary1 问题缘起1.1 Selenium长文本输入阻塞1.2…

vue项目本地开发完成后部署到服务器后报404

vue项目本地开发完成后部署到服务器后报404是什么原因呢? 一、如何部署 前后端分离开发模式下,前后端是独立布署的,前端只需要将最后的构建物上传至目标服务器的web容器指定的静态目录下即可 我们知道vue项目在构建后,是生成一系…

开源网安解决方案荣获四川数实融合创新实践优秀案例

​11月16日,2023天府数字经济峰会在成都圆满举行。本次峰会由四川省发展和改革委员会、中共四川省委网络安全和信息化委员会办公室、四川省经济和信息化厅等部门联合指导,聚焦数字经济与实体经济深度融合、数字赋能经济社会转型发展等话题展开交流研讨。…

航天联志Aisino-AISINO26081R服务器通过调BIOS用U盘重新做系统(windows系统通用)

产品名称:航天联志Aisino系列服务器 产品型号:AISINO26081R CPU架构:Intel 的CPU,所以支持Windows Server all 和Linux系统(重装完系统可以用某60驱动管家更新所有硬件驱动) 操作系统:本次我安装的服务器系统为Serv…

对话芯动科技 | 助力云游戏 4K级服务器显卡的探索与创新

2021年芯动科技推出了基于IMG BXT GPU IP的风华1号显卡。单块风华1号显卡可在台式机和云游戏中实现4K级别的性能,渲染能力达到5 TFLOPS,如果在服务器中同时运行两块显卡,性能还可翻倍。该显卡是为不断扩大的安卓云游戏市场量身定制的&#xf…

时序预测 | Python实现ConvLSTM卷积长短期记忆神经网络股票价格预测(Conv1D-LSTM)

时序预测 | Python实现ConvLSTM卷积长短期记忆神经网络股票价格预测(Conv1D-LSTM) 目录 时序预测 | Python实现ConvLSTM卷积长短期记忆神经网络股票价格预测(Conv1D-LSTM)预测效果基本介绍程序设计参考资料预测效果 基本介绍 时序预测 | Python实现ConvLSTM卷积长短期记忆神…

智能指针面试题

智能指针被问到的概率还是很大的,特别是Shared_ptr,最好会手撕,亲身经历! 基本概念 1. RAll RAII(Resource Acquisition Is Initialization)是一种利用对象生命周期来控制程序资源(如内存、文…

解决Requests中使用httpbin服务器问题:自定义URL的实现与验证

问题背景 在使用Python的Requests模块进行单元测试时,可能会遇到无法使用本地运行的httpbin服务器进行测试的问题。这是因为测试脚本允许通过环境变量HTTPBIN_URL指定用于测试的本地httpbin实例,但在某些测试用例中,URL是硬编码为httpbin.or…

100套Axure RP大数据可视化大屏模板及通用组件库

106套Axure RP大数据可视化大屏模板包括了多种实用美观的可视化组件库及行业模板库,行业模板涵盖:金融、教育、医疗、政府、交通、制造等多个行业提供设计参考。 随着大数据的发展,可视化大屏在各行各业得到越来越广泛的应用。可视化大屏不再…

基于共生生物算法优化概率神经网络PNN的分类预测 - 附代码

基于共生生物算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于共生生物算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于共生生物优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

02-1解析xpath

我是在edge浏览器中安装的xpath,需要安装的朋友可以参考下面这篇博客最新版edge浏览器中安装xpath插件 一、xpathd的使用 安装lxml pip install lxml ‐i https://pypi.douban.com/simple导入lxml.etree from lxml import etreeetree.parse() 解析本地文件 htm…

11月最新版付费进群源码自动定位+开源

感觉这个和前几天发布的付费进群差不多。 但有部分地方不一样,也是有什么分销分站后台,看见就头大。 没测试具体功能,可以搭建出来,D盾也未检测到加密文件 更多源码请到www.baicxx.com