基于共生生物算法优化概率神经网络PNN的分类预测 - 附代码

news2025/1/22 21:06:44

基于共生生物算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于共生生物算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于共生生物优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用共生生物算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于共生生物优化的PNN网络

共生生物算法原理请参考:https://blog.csdn.net/u011835903/article/details/113134476

利用共生生物算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

共生生物参数设置如下:

%% 共生生物参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,共生生物-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1221816.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

02-1解析xpath

我是在edge浏览器中安装的xpath,需要安装的朋友可以参考下面这篇博客最新版edge浏览器中安装xpath插件 一、xpathd的使用 安装lxml pip install lxml ‐i https://pypi.douban.com/simple导入lxml.etree from lxml import etreeetree.parse() 解析本地文件 htm…

11月最新版付费进群源码自动定位+开源

感觉这个和前几天发布的付费进群差不多。 但有部分地方不一样,也是有什么分销分站后台,看见就头大。 没测试具体功能,可以搭建出来,D盾也未检测到加密文件 更多源码请到www.baicxx.com

OpenCV技术应用(4)— 如何改变图像的透明度

前言:Hello大家好,我是小哥谈。本节课就手把手教你如何改变图像的透明度,希望大家学习之后能够有所收获~!🌈 目录 🚀1.技术介绍 🚀2.实现代码 🚀1.技术介绍 改变图像透明度的实…

(论文阅读40-45)图像描述1

40.文献阅读笔记(m-RNN) 简介 题目 Explain Images with Multimodal Recurrent Neural Networks 作者 Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan L. Yuille, arXiv:1410.1090 原文链接 http://arxiv.org/pdf/1410.1090.pdf 关键词 m-RNN、…

金融业务系统: Service Mesh用于安全微服务集成

随着云计算的不断演进,微服务架构变得日益复杂。为了有效地管理这种复杂性,人们开始采用服务网格。在本文中,我们将解释什么是Service Mesh,为什么它对现代云架构至关重要,以及它是如何解决开发人员今天面临的一些最紧…

PCL_点云分割_基于法线微分分割

一、概述 PCL_点云分割_基于法线微分分割_点云法向量微分-CSDN博客 利用不同的半径(大的半径、小半径)来计算同一个点的法向量差值P。判断P的范围,从而进行分割。 看图理解: 二、计算流程 1、计算P点小半径的法向量Ns 2、计…

Python3语法总结-基本数据类型①

Python3语法总结-基本数据类型① Python3语法总结一.注释和基本数据类型标识符与关键字注释变量标准数据类型数字(Number)布尔类型(bool) 未完待续... Python3语法总结 一.注释和基本数据类型 标识符与关键字 标识符是指程序中定义的一个名字,如变量名&#xff0…

NewStarCTF2023 Reverse Week3---Let‘s Go Wp

分析 程序打开后结合题目可以发现是 GO语言。 在GO语言中,main_init 要先于 main 函数运行。 在这里对一个iv做了处理。 用插件Signsrch发现AES加密 知道是AES后,就需要找密文,key和iv了。 密文应该就是前面的十六进制字符串。 key和i…

python趣味编程-5分钟实现一个F1 赛车公路游戏(含源码、步骤讲解)

Python 中的 F1 赛车公路游戏及其源代码 F1 Race Road Game是用Python编程语言开发的,它是一个桌面应用程序。 这款 Python 语言的 F1 赛道游戏可以免费下载开源代码,它是为想要学习 Python 的初学者创建的。 该项目系统使用了 Pygame 和 Random 函数。 Pygame 是一组跨平…

Oracle 存储过程数据插入临时表慢以及SQL语句查询慢

/*parallel*/ 解释: 一般表数据量比较大(超过100万)时,可以使用parallel强制启动并行度来提升查询速度 用法:/*parallel(table_short_name,cash_number)*/ 可以加到insert、delete、update、select的后面来使用 比如&#xff…

获取用户详细信息

pojo.user:JsonIgnore注解作用忽略密码属性,返回给用户的信息不能有敏感属性密码 package com.lin.springboot01.pojo;import com.fasterxml.jackson.annotation.JsonIgnore; import lombok.Data;import java.time.LocalDateTime;Data public class Use…

多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测

多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 …

Jenkins代码检测和本地静态检查

1:Jenkins简介 Jenkins是一个用Java编写的开源的持续集成工具;Jenkins自动化部署可以解决集成、测试、部署等重复性的工作,工具集成的效率明显高于人工操作;并且持续集成可以更早的获取代码变更的信息,从而更早的进入测…

vue3+vite+ts 发布自定义组件到npm

vue3vite 发布自定义组件到npm 初始化项目编写组件配置打包组件上传到npm测试组件库 初始化项目 // 创建项目 pnpm create vite vue-test-app --template vue-ts// 运行项目 cd vite vue-test-app pnpm install pnpm run dev编写组件 1、根目录下创建packages目录作为组件的开…

C++--STL总结

参考教程:黑马程序员匠心之作|C教程从0到1入门编程,学习编程不再难_哔哩哔哩_bilibili 软件界一直希望建立一种可重复利用的东西,C的面向对象和泛型编程思想,目的就是复用性的提升。 大多情况下,数据结构和算法都未能有一套标准,…

【DevOps】Git 图文详解(二):Git 安装及配置

Git 图文详解(二):Git 安装及配置 1.Git 的配置文件2.配置 - 初始化用户3.配置 - 忽略.gitignore Git 官网:https://www.git-scm.com/ 下载安装包进行安装。Git 的使用有两种方式: 命令行:Git 的命令通过系…

Linux上使用Python源码编译安装Python

安装python apt install python3-dev python3 python3-venv yum install python38-devel源码安装Python 1.下载需要的Python版本 Python源码地址:https://www.python.org/downloads/source/ 2.安装gcc(yum install gcc) 3.解压&#xff0c…

电子病历编辑器源码(Springboot+原生HTML)

一、系统简介 本系统主要面向医院医生、护士,提供对住院病人的电子病历书写、保存、修改、打印等功能。本系统基于云端SaaS服务方式,通过浏览器方式访问和使用系统功能,提供电子病历在线制作、管理和使用的一体化电子病历解决方案&#xff0c…

在 el-table 中嵌入 el-checkbox el-input el-upload 多组件,实现复杂业务场景

由于业务场景的复杂性,需实现:在 el-table 表格中 嵌入 el-checkbox 多选框 及 el-input 输入框 及 el-upload 上传组件 ,先附上实现效果图。 从图片可以看出其实就是一个规格可以带有多个属性的规格表,实现此效果需涉及到的知识点…

安装应用与免安装应用差异对比

差异 安装的程序和免安装的应用程序之间有以下几个方面的差别: 安装过程:安装的程序需要通过一个安装程序或安装脚本进行安装。这个过程通常会将应用程序的文件和依赖项复制到指定的目录,并进行一些配置和注册操作。免安装的应用程序则不需要…