(论文阅读40-45)图像描述1

news2024/11/19 5:42:01

40.文献阅读笔记(m-RNN)

简介

题目

Explain Images with Multimodal Recurrent Neural Networks

作者

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan L. Yuille, arXiv:1410.1090

原文链接

http://arxiv.org/pdf/1410.1090.pdf

关键词

m-RNN、multimodal

研究问题

研究问题:解释图像内容;图像和句子检索。

以前的方法思路:看做句子和图像之间的检索问题。给定句子(图像)查询相应的图像(句子)。

具体实施方法:对句子和图像都提取特征,并且将其映射到相同的语义 嵌入空间。

缺点:这样的方法对新图像的描述能力弱。(不在数据库中的句子、图像无法查询,或者查询结果不准确)

针对这一任务,通常有两类方法。第一类假定有特定的语言语法规则。它们解析句子并将其分为几个部分。然后将每个部分与图像中的对象或属性关联起来(例如,使用条件随机场模型,使用马尔可夫随机场模型)。这类方法生成的句子在语法上是正确的。另一类方法与我们的方法更为相关,它们利用深度玻尔兹曼机和主题模型等,学习多模态输入(即句子和图像)空间的概率密度。与第一种方法相比,它们能生成结构更丰富、更灵活的句子。给定相应图像生成句子的概率可作为检索的亲和度指标。

研究方法

多模态循环神经网络(m-RNN):该模型直接模拟了在给定先前单词和图像的情况下生成单词的概率分布。图像描述就是从这个分布中采样生成的。该模型由两个子网络组成:用于句子的深度递归神经网络和用于图像的深度卷积网络。这两个子网络在多模态层中相互作用,形成整个 m-RNN 模型。

The whole m-RNN architecture contains a language model part, an image part and a multimodal part. The language model part learns the dense feature embedding for each word in the dictionary and stores the semantic temporal context in recurrent layers. The image part contains a deep Convulutional Neural Network (CNN) [17] which extracts image features. The multimodal part connects the language model and the deep CNN together by a one-layer representation.

语言模型学习字典中每个词的稠密特征嵌入,并在recurrent layers中存储语义时间上下文(semantic temporal context)。

图像部分包含提取图像特征的深度卷积神经网络( CNN )。

多模态部分通过单层表示将语言模型和深度CNN连接在一起。

损失函数:using a perplexity based cost function

  1. RNN在每个时间帧中有六个层:输入词层、两个词嵌入层、递归层、多模态层和 softmax 层

研究结论

模型优于最先进的生成方法。此外,m-RNN 模型还可应用于检索图像或句子的任务,与直接优化检索排序目标函数的先进方法相比,其性能有了显著提高。模型是可扩展的,并且有潜力通过为图像和句子整合更强大的深度网络来进一步改进。

创新不足

额外知识

递归神经网络:【神经网络】递归神经网络 - 知乎 (zhihu.com)

模型必须能够按照树结构去处理信息,而不是序列(循环神经网络),这就是递归神经网络的作用。

41.文献阅读笔记

简介

题目

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models

作者

Ryan Kiros, Ruslan Salakhutdinov, Richard S. Zemel, arXiv:1411.2539.

原文链接

http://arxiv.org/pdf/1411.2539.pdf

关键词

Visual-Semantic

研究问题

图像描述

研究方法

编码器:深度卷积网络( CNN )和长短期记忆循环网络( LSTM ),用于学习图像-句子的联合嵌入。解码器:一种新的神经语言模型,它将结构向量和内容向量结合起来,用于每次依次生成单词。

解码器补充:引入了一种新的神经语言模型,称为结构-内容神经语言模型(SC-NLM)。SC-NLM 与现有模型的不同之处在于,它以编码器产生的分布式表征为条件,将句子的结构与内容割裂开来。

结构变量有助于引导模型生成短语,可以看作是一个软模板,有助于避免模型生成语法废话。

SC-NLM 可以仅根据文本进行训练。这样,我们就可以利用大量的单语文本(如非图像标题)来提高语言模型的质量。

编码器为我们提供了一种对图像和标题进行排序并开发良好评分函数的方法,而解码器则可以使用所学到的表征来优化评分函数,从而生成新的描述并对其进行评分。

研究结论

最先进的性能

创新不足

额外知识

Lstm:包含一个内置的记忆单元,用于存储信息和利用远距离上下文。LSTM 存储单元周围有门控单元,用于读写和重置信息。

42.文献阅读笔记(LRCN)

简介

题目

Long-term Recurrent Convolutional Networks for Visual Recognition and Description

作者

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrel l, arXiv:1411.4389.

原文链接

http://arxiv.org/pdf/1411.4389.pdf

关键词

recurrent convolutional

研究问题

描述了一类可端到端训练且适用于大规模视觉理解任务的递归卷积架构,并展示了这些模型在活动识别、图像标题和视频描述方面的价值。

递归卷积模型则是 "双重深度 "的,因为它们学习空间和时间的组合表征。当非线性因素被纳入网络状态更新时,学习长期依赖关系就成为可能。可微分递归模型的吸引力在于,它们可以将可变长度的输入(如视频)直接映射到可变长度的输出(如自然语言文本),并能模拟复杂的时间动态;同时,它们还能通过反向传播进行优化。

有关用于视频处理的 CNN 模型的研究已经考虑了在原始序列数据上学习三维时空滤波器,以及在固定窗口或视频镜头片段上学习帧到帧表示,其中包含了瞬时光流基于轨迹的聚合模型 。这些模型探索了感知时间序列表征学习的两个极端:要么学习完全通用的时变加权,要么应用简单的时间池。

研究方法

主张视频识别和描述模型也应在时间维度上进行深度学习,即潜在变量具有时间递归性。

LSTM 单元的隐藏状态使用非线性机制进行增强,允许状态在不修改的情况下传播、更新或重置,使用的是简单的学习门控函数。

应用于时变输入和输出的愿望不断增长的架构

研究结论

证明 LSTM 类型的模型可以提高传统视频活动挑战的识别率,并实现从图像像素到句子级自然语言描述的新颖端到端优化映射。我们还表明,这些模型改进了从传统视觉模型衍生的中间视觉表征中生成描述的能力。

创新不足

额外知识

CRF:条件随机场

43.文献阅读笔记

简介

题目

Show and Tell: A Neural Image Caption Generator

作者

Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan

原文链接

http://arxiv.org/pdf/1411.4555.pdf

关键词

研究问题

图像描述

想回答诸如"数据集大小如何影响泛化"、"它将能够实现什么样的迁移学习"、"它将如何处理弱标记样本"等问题。

研究方法

CNN(图像的表示)+LSTM(联系前后输入)

介绍了 NIC,这是一个端到端神经网络系统,可以自动查看图像并生成通俗易懂的合理描述。NIC 以卷积神经网络为基础,将图像编码为紧凑的表示形式,然后由递归神经网络生成相应的句子。对模型的训练是为了最大限度地提高给定图像的句子的可能性。

利用一个循环神经网络将可变长度的输入编码为固定维度的向量,并使用这种表示将其"解码"到期望的输出句子。

研究结论

随着图像描述可用数据集规模的扩大,NIC 等方法的性能也将随之提高。此外,如何利用来自图像和文本的无监督数据来改进图像描述方法也将是一个有趣的课题。

创新不足

额外知识

None

44.文献阅读笔记

简介

题目

Deep Visual-Semantic Alignments for Generating Image Description

作者

Andrej Karpathy, Li Fei-Fei, CVPR, 2015.

原文链接

http://cs.stanford.edu/people/karpathy/cvpr2015.pdf

关键词

对图像内容进行密集注释。

研究问题

提出了一种生成图像及其区域的自然语言描述的模型。以往视觉识别领域的大部分工作都集中在用一组固定的视觉类别标记图像上,这些工作已经取得了很大的进展。然而,尽管封闭的视觉概念词汇表构成了一种方便的建模假设,但与人类所能编写的大量丰富描述相比,它们具有极大的局限性。针对生成图像描述的挑战,已经开发出了一些开创性的方法。然而,这些模型通常依赖于硬编码的视觉概念和句子模板,这就限制了它们的多样性。此外,这些工作的重点是将复杂的视觉场景还原成一个句子,而我们认为这是不必要的限制。

研究方法

利用图像及其句子描述的数据集来学习语言和视觉数据之间的模态间对应关系。基于图像区域上的卷积神经网络,句子上的双向循环神经网络和通过多模态嵌入对齐两个模态的结构化目标的新颖组合。

描述了一种多模态循环神经网络架构,该架构使用推断的对齐来学习生成新的图像区域描述。

输入->推断->输出

研究结论

创新不足

额外知识

双向递归神经网络(Bidirectional Recurrent Neural Network,BRNN):来计算单词表示。双向递归神经网络采用 N 个单词序列(以 1-k 表示法编码),并将每个单词转换为 h 维向量。不过,每个单词的表征都会被该单词周围大小不一的上下文所丰富。

45.文献阅读笔记

简介

题目

Translating Videos to Natural Language Using Deep Recurrent Neural Networks

作者

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko, NAACL-HLT, 2015.

原文链接

http://arxiv.org/pdf/1412.4729.pdf

关键词

视频翻译

研究问题

将视频直接翻译成句子.描述的视频数据集稀缺,现有的大多数方法已被应用于可能词汇量较小的玩具领域。人们已经提出了针对具有一小部分已知动作和对象的狭窄领域的解决方案.

研究方法

同时具有卷积和循环结构的统一深度神经网络将视频直接翻译成句子。

该网络在 120 多万张带有类别标签的图像上进行了预先训练.

他们将其模型的一个版本应用于视频到文本的生成,但没有提出端到端的单一网络,而是使用了中间角色表示。

利用长短期记忆(LSTM)递归神经网络来建立序列动态模型,但将其直接连接到深度卷积神经网络来处理传入的视频帧,从而完全避免了监督中间表征。

研究结论

提出了一种用于视频描述的模型,该模型使用神经网络从像素到句子的整个流水线,并且可以潜在地允许整个网络的训练和调整。在一个广泛的实验评估中,我们表明我们的方法比相关的方法生成更好的句子。我们还表明,与仅依赖视频描述数据相比,利用图像描述数据可以提高性能。然而,我们的方法在更好地利用视频中的时间信息方面存在不足

创新不足

每帧都进行卷积处理,运算量太大.

额外知识

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1221809.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

金融业务系统: Service Mesh用于安全微服务集成

随着云计算的不断演进,微服务架构变得日益复杂。为了有效地管理这种复杂性,人们开始采用服务网格。在本文中,我们将解释什么是Service Mesh,为什么它对现代云架构至关重要,以及它是如何解决开发人员今天面临的一些最紧…

PCL_点云分割_基于法线微分分割

一、概述 PCL_点云分割_基于法线微分分割_点云法向量微分-CSDN博客 利用不同的半径(大的半径、小半径)来计算同一个点的法向量差值P。判断P的范围,从而进行分割。 看图理解: 二、计算流程 1、计算P点小半径的法向量Ns 2、计…

Python3语法总结-基本数据类型①

Python3语法总结-基本数据类型① Python3语法总结一.注释和基本数据类型标识符与关键字注释变量标准数据类型数字(Number)布尔类型(bool) 未完待续... Python3语法总结 一.注释和基本数据类型 标识符与关键字 标识符是指程序中定义的一个名字,如变量名&#xff0…

NewStarCTF2023 Reverse Week3---Let‘s Go Wp

分析 程序打开后结合题目可以发现是 GO语言。 在GO语言中,main_init 要先于 main 函数运行。 在这里对一个iv做了处理。 用插件Signsrch发现AES加密 知道是AES后,就需要找密文,key和iv了。 密文应该就是前面的十六进制字符串。 key和i…

python趣味编程-5分钟实现一个F1 赛车公路游戏(含源码、步骤讲解)

Python 中的 F1 赛车公路游戏及其源代码 F1 Race Road Game是用Python编程语言开发的,它是一个桌面应用程序。 这款 Python 语言的 F1 赛道游戏可以免费下载开源代码,它是为想要学习 Python 的初学者创建的。 该项目系统使用了 Pygame 和 Random 函数。 Pygame 是一组跨平…

Oracle 存储过程数据插入临时表慢以及SQL语句查询慢

/*parallel*/ 解释: 一般表数据量比较大(超过100万)时,可以使用parallel强制启动并行度来提升查询速度 用法:/*parallel(table_short_name,cash_number)*/ 可以加到insert、delete、update、select的后面来使用 比如&#xff…

获取用户详细信息

pojo.user:JsonIgnore注解作用忽略密码属性,返回给用户的信息不能有敏感属性密码 package com.lin.springboot01.pojo;import com.fasterxml.jackson.annotation.JsonIgnore; import lombok.Data;import java.time.LocalDateTime;Data public class Use…

多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测

多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 …

Jenkins代码检测和本地静态检查

1:Jenkins简介 Jenkins是一个用Java编写的开源的持续集成工具;Jenkins自动化部署可以解决集成、测试、部署等重复性的工作,工具集成的效率明显高于人工操作;并且持续集成可以更早的获取代码变更的信息,从而更早的进入测…

vue3+vite+ts 发布自定义组件到npm

vue3vite 发布自定义组件到npm 初始化项目编写组件配置打包组件上传到npm测试组件库 初始化项目 // 创建项目 pnpm create vite vue-test-app --template vue-ts// 运行项目 cd vite vue-test-app pnpm install pnpm run dev编写组件 1、根目录下创建packages目录作为组件的开…

C++--STL总结

参考教程:黑马程序员匠心之作|C教程从0到1入门编程,学习编程不再难_哔哩哔哩_bilibili 软件界一直希望建立一种可重复利用的东西,C的面向对象和泛型编程思想,目的就是复用性的提升。 大多情况下,数据结构和算法都未能有一套标准,…

【DevOps】Git 图文详解(二):Git 安装及配置

Git 图文详解(二):Git 安装及配置 1.Git 的配置文件2.配置 - 初始化用户3.配置 - 忽略.gitignore Git 官网:https://www.git-scm.com/ 下载安装包进行安装。Git 的使用有两种方式: 命令行:Git 的命令通过系…

Linux上使用Python源码编译安装Python

安装python apt install python3-dev python3 python3-venv yum install python38-devel源码安装Python 1.下载需要的Python版本 Python源码地址:https://www.python.org/downloads/source/ 2.安装gcc(yum install gcc) 3.解压&#xff0c…

电子病历编辑器源码(Springboot+原生HTML)

一、系统简介 本系统主要面向医院医生、护士,提供对住院病人的电子病历书写、保存、修改、打印等功能。本系统基于云端SaaS服务方式,通过浏览器方式访问和使用系统功能,提供电子病历在线制作、管理和使用的一体化电子病历解决方案&#xff0c…

在 el-table 中嵌入 el-checkbox el-input el-upload 多组件,实现复杂业务场景

由于业务场景的复杂性,需实现:在 el-table 表格中 嵌入 el-checkbox 多选框 及 el-input 输入框 及 el-upload 上传组件 ,先附上实现效果图。 从图片可以看出其实就是一个规格可以带有多个属性的规格表,实现此效果需涉及到的知识点…

安装应用与免安装应用差异对比

差异 安装的程序和免安装的应用程序之间有以下几个方面的差别: 安装过程:安装的程序需要通过一个安装程序或安装脚本进行安装。这个过程通常会将应用程序的文件和依赖项复制到指定的目录,并进行一些配置和注册操作。免安装的应用程序则不需要…

vue监听对象属性值变化

一、官方文档 二、实现方法 方法一、直接根据watch来监听 export default {data() {return {object: {username: ,password: }}},watch: {object.username(newVal, oldVal) {console.log(newVal, oldVal)}} }方法二:利用watch和computed来实现监听 利用computed定…

HCL设备启动失败——已经解决

摸索了一个多小时,终于搞定了,首先HCL这款软件是需要安装Oracle VM Visual Box的,小伙伴们安装的时候记得点击安装Visual Box; 安装完后显示设备不能启动,然后我根据这个 HCL模拟器中Server设备启动失败的解决办法_hc…

电路综合-基于简化实频的集总参数电路匹配3-将任意阻抗用集总参数匹配至归一化阻抗

电路综合-基于简化实频的集总参数电路匹配3-将任意阻抗用集总参数匹配至归一化阻抗 前面的相关理论: 电路综合-基于简化实频的集总参数电路匹配1 电路综合-基于简化实频的集总参数电路匹配2-得出解析解并综合 理论这两个已经介绍过了,直接给出案例 代码…

用低代码平台开发应用

低代码一词,有人认为它是第四代编程语言,有人认为它是开发模式的颠覆,也有人认为它是企业管理模式的变革……有很多声音,社区讨论很热烈。 即使这样,至今也有不少人还不知道这项技术,今天笼统的介绍一下低代…