欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。
往期相关背景
点击前往
题目大意
题目链接
https://www.luogu.com.cn/problem/P3194
在直角坐标系中给定一些直线,然后从Y轴无穷大处往0处看,问可以看到哪些直线。
解析
通过观察可以发现,能看到的直线会形成一个开口凸包。
可以先对直线进行方向规定向右,然后进行半平面求交,凸包有效的边就是可以看到的直线。
代码
#include<stdio.h>
#include<cmath>
#include <algorithm>
#include <vector>
#include <list>
#include <cstring>
#include <deque>
using namespace std;
const double EPS = 1e-12;
const int N = 1e6 + 10;
const int M = 1e6 + 10;
int cmp(double d) {
if (abs(d) < EPS)return 0;
if (d > 0)return 1;
return -1;
}
class Point {
public:
double x, y;
int id;
Point() {}
Point(double a, double b) :x(a), y(b) {}
Point(const Point& p) :x(p.x), y(p.y), id(p.id) {}
void in() {
scanf("%lf %lf", &x, &y);
}
void out() {
printf("%f %f\n", x, y);
}
double dis() {
return sqrt(x * x + y * y);
}
double dis2() {
return x * x + y * y;
}
Point operator -() const {
return Point(-x, -y);
}
Point operator -(const Point& p) const {
return Point(x - p.x, y - p.y);
}
Point operator +(const Point& p) const {
return Point(x + p.x, y + p.y);
}
Point operator *(double d)const {
return Point(x * d, y * d);
}
Point operator /(double d)const {
return Point(x / d, y / d);
}
void operator -=(Point& p) {
x -= p.x;
y -= p.y;
}
void operator +=(Point& p) {
x += p.x;
y += p.y;
}
void operator *=(double d) {
x *= d;
y *= d;
}
void operator /=(double d) {
this ->operator*= (1 / d);
}
bool operator<(const Point& a) const {
return x < a.x || (abs(x - a.x) < EPS && y < a.y);
}
bool operator==(const Point& a) const {
return abs(x - a.x) < EPS && abs(y - a.y) < EPS;
}
};
// 向量操作
double cross(const Point& a, const Point& b) {
return a.x * b.y - a.y * b.x;
}
double dot(const Point& a, const Point& b) {
return a.x * b.x + a.y * b.y;
}
class Line {
public:
Point front, tail;
int ind;
Line() {}
Line(const Point& a, const Point& b) :front(a), tail(b) {}
Line(const Point& a, const Point& b, int i) :front(a), tail(b), ind(i) {}
};
int cmp(const Line& a, const Line& b) {
auto ta = atan2(a.front.y - a.tail.y, a.front.x - a.tail.x);
auto tb = atan2(b.front.y - b.tail.y, b.front.x - b.tail.x);
return cmp(ta - tb);
}
// 点在直线哪一边>0 左边,<0边
int SideJudge(const Line& a, const Point& b) {
return cmp(cross(a.front - a.tail, b - a.tail));
}
int LineSort(const Line& a, const Line& b) {
int c = cmp(a, b);
if (c)return c < 0;
return SideJudge(b, a.front) > 0;
}
/*
点p 到 p+r 表示线段1
点q 到 q+s 表示线段2
线段1 上1点用 p' = p+t*r (0<=t<=1)
线段2 上1点用 q' = q+u*s (0<=u<=1)
让两式相等求交点 p+t*r = q+u*s
两边都叉乘s
(p+t*r)Xs = (q+u*s)Xs
pXs + t*rXs = qXs
t = (q-p)Xs/(rXs)
同理,
u = (p-q)Xr/(sXr) -> u = (q-p)Xr/(rXs)
以下分4种情况:
1. 共线,sXr==0 && (q-p)Xr==0, 计算 (q-p)在r上的投影在r长度上的占比t0,
计算(q+s-p)在r上的投影在r长度上的占比t1,查看[t0, t1]是否与范围[0,1]有交集。
如果t0>t1, 则比较[t1, t0]是否与范围[0,1]有交集。
t0 = (q-p)*r/(r*r)
t1 = (q+s-p)*r/(r*r) = t0 + s · r / (r · r)
2. 平行sXr==0 && (q-p)Xr!=0
3. 0<=u<=1 && 0<=t<=1 有交点
4. 其他u, t不在0到范围内,没有交点。
*/
pair<double, double> intersection(const Point& q, const Point& s, const Point& p, const Point& r) {
// 计算 (q-p)Xr
auto qpr = cross(q - p, r);
auto qps = cross(q - p, s);
auto rXs = cross(r, s);
if (cmp(rXs) == 0)return { -1, -1 }; // 平行或共线
// 求解t, u
// t = (q-p)Xs/(rXs)
auto t = qps / rXs;
// u = (q-p)Xr/(rXs)
auto u = qpr / rXs;
return { u, t };
}
Point LineCross(const Line& a, const Line& b) {
Point dira = a.front - a.tail;
Point dirb = b.front - b.tail;
auto p = intersection(a.tail, dira, b.tail, dirb);
return a.tail + dira * p.first;
}
class HalfPlane {
public:
vector<Line> lines;
void addLine(const Line& a) {
lines.push_back(a);
}
vector<int> run() {
sort(lines.begin(), lines.end(), LineSort);
vector<int> q(lines.size() + 10);
vector<Point> t(lines.size() + 10);
int l = -1, r = 0;
q[0] = 0;
for (int i = 1; i < lines.size(); ++i) {
if (cmp(lines[i], lines[i - 1]) == 0)continue;
while (r - l > 1 && SideJudge(lines[i], t[r]) <= 0)r--;
while (r - l > 1 && SideJudge(lines[i], t[l + 2]) <= 0)l++;
q[++r] = i;
t[r] = LineCross(lines[q[r]], lines[q[r - 1]]);
}
/*while (r - l > 1 && SideJudge(lines[q[l + 1]], t[r]) < 0)r--;
t[r+1] = LineCross(lines[q[l+1]], lines[q[r]]);
r++;*/
// 统计交点
/*
l++;
vector<Point> ans(r-l);
for (int i = 0; i < ans.size(); ++i) {
ans[i] = t[i + l + 1];
}*/
vector<int> ans;
for (int i = l + 1; i <= r; ++i) ans.push_back(lines[q[i]].ind);
sort(ans.begin(), ans.end());
return ans;
}
};
Point oiPs[N];
void solve() {
int n;
scanf("%d", &n);
HalfPlane hp;
int a, b;
for (int i = 0; i < n; ++i) {
scanf("%d%d", &a, &b);
Line l(Point(1, a + b), Point(0, b), i + 1);
hp.addLine(l);
}
auto ans = hp.run();
for (auto x : ans) printf("%d ", x);
}
int main() {
solve();
return 0;
}
/*
1
0 0
2
-1 0
-1 1
4
-1 0
-1 1
0 0
1 -1
10
1 2
5 8
7 6
-1 8
-8 9
-9 11
-3 -4
-5 7
8 7
9 10
10
-8 10
-7 9
-6 8
-10 0
-5 7
-4 6
-3 5
-2 4
-1 3
0 0
*/
本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。