用LLM生成反驳:首先洞察审稿人的心理,再巧妙回应!

news2024/11/18 3:50:06

bf135b634fb302ce68cdc16c530e8a37.png

深度学习自然语言处理 原创
作者:Winnie

在科研领域,同行评审(review-rebuttal)是保证学术质量的关键环节。这一过程中的辩论和反驳非常具有挑战性。传统的同行评审生成任务通常集中在表面层面的推理。 研究人员发现,考虑论点背后的态度根源和主题可以提高反驳的有效性。

今天介绍的这篇研究将心理学理论与辩论技术相结合,为计算辩论领域带来了新的视角。具体来说,文章主要做了以下工作:

  • 提出了一种全新的同行评审反驳生成任务——柔道辩论(Jiu-Jitsu Argumentation),结合态度根源和主题进行辩论。

  • 开发了JITSUPEER数据集,包含丰富的态度根源、主题和典型反驳案例。

  • 为同行评审反驳生成提供了强大的基准线。

9acd54d4961b9396f1a327115b98f3fb.png

Paper: Exploring Jiu-Jitsu Argumentation for Writing Peer Review Rebuttals
Link: https://arxiv.org/pdf/2311.03998.pdf

做一个专门面向年轻NLPer的每周在线论文分享平台

Jiu-Jitsu Argumentation

同行评审对于确保科学的高质量至关重要:作者提交研究成果,而审稿人则辩论应不应该接受其发表。通常评审后还会有一个反驳阶段。在这里,作者有机会通过反驳论点来说服审稿人提高他们的评估分数。

这篇文章探索了同行评审领域中态度根源的概念,即在审查科学论文的标准时,识别审稿人的潜在信仰和观点。

作者首先定义典型的rebuttal为:一种与潜在态度根源相一致并解决它们的反驳论点。它足够通用,可以作为模板用于许多相同(态度根源-主题)审稿元组的实例,同时表达特定的反驳行动。

根据这个定义,作者提出了态度根源和主题引导的反驳生成任务:给定一个同行评审论点rev和一个反驳行动a,任务是根据rev的态度根源和主题生成典型反驳c。

下图展示了如何通过一系列中间步骤,将审稿内容映射到标准的反驳上。这个审稿的主要观点是关于清晰度和整体性。f24f0161fa63468376de827c06b064b8.png

JITSUPEER 数据集

为了评估反驳生成任务,作者构建了JITSUPEER数据集。该数据集专注于同行评审过程中的态度根源和主题,通过连接这些元素与基于特定反驳行动的典型反驳,实现了一种态度和主题引导的反驳生成方法。

  • 态度根源与主题分布: 大多数审稿句子的态度根源是“实质性”(Substance),这也是拥有最多主题(29个)的根源。最常见的主题是方法论(Methodology)、实验(Experiments)和相关工作(Related Work)。这一发现符合直觉,因为机器学习领域的审稿者通常非常关注方法论的稳健性和实用性。

  • 典型反驳识别: 研究团队为不同的态度根源和反驳行动识别了302个典型反驳。这些典型反驳可以映射到2,219个审稿句子(总共2,332个)。与“完成任务”(Task Done)这一反驳行动和“实质性”态度根源相关的典型反驳句子数量最多。

  • 典型反驳示例: 在报告的表格中,研究团队展示了一些典型反驳的例子。显然,不同的态度根源-主题描述与不同的典型反驳相关联。

c35a92426ad4faaa065e894541cf9029.png

起始数据集

作为JITSUPEER的基础,研究团队采用了名为DISAPERE的数据集,该数据集包含了2019年和2020年ICLR会议的审稿和相应反驳。这些审稿和反驳被细致地分解成单个句子,并被三层注释标记,包括审稿方面和极性、审稿与反驳之间的链接,以及反驳行动的直接注释。特别地,研究团队关注于需要反驳的负面审稿句子,探索了审稿方面的使用,以此来体现社区共享的科学价值观。

此外,研究者还使用了另一数据集PEER-REVIEW-ANALYZE,该数据集是一个基准资源,包含2018年ICLR的审稿,同样配备了多层注释。这些注释包括了审稿句子所指目标论文的特定部分,如方法、问题陈述等,这些信息被视为态度主题的关键元素。这一研究提供了一个独特的视角,通过关注论文的特定部分,进一步丰富了对工作的潜在信仰和主题信息的理解。

数据集丰富化

在这项研究中,研究团队的目标是创建一个详尽的语料库,其中审稿句子不仅被标注为态度根源和主题,而且还与特定反驳行动的典型反驳句子相连接。为了实现这一目标,研究团队采用了一系列方法来丰富DISAPERE数据集。

主题预测

首先,他们使用了PEER-REVIEW-ANALYZE数据集来预测态度主题,即审稿句子中所涉及的论文部分。研究团队测试了不同的模型,包括通用模型和针对同行评审领域的专门模型,如BERT、RoBERTa和SciBERT。他们通过中间层的遮蔽语言模型(MLM)对这些模型进行了领域专门化处理,并在多个配置下进行了训练和优化。研究团队在变压器的顶部添加了sigmoid分类头,以进行微调,并对不同的学习率进行了网格搜索。他们基于验证性能采用早期停止策略,并在PEER-REVIEW-ANALYZE数据集上评估了模型的性能。结果显示,所有变压器模型的性能都显著优于基线模型,其中经过领域专门化处理的SciBERTds_neg模型表现最佳。

根源–主题集群描述

接下来,研究团队对每个态度根源–主题集群添加额外的自然语言描述,旨在提供比单纯标签元组更丰富的人类可解释性。他们通过比较自动和手动生成的摘要来完成这一步骤。

摘要生成:在自动摘要方面,研究团队采用了领域特定的SciBERTds_neg模型对句子进行嵌入,并根据余弦相似度选择最具代表性的审稿句子。

评估: 研究团队通过展示摘要和相应的集群句子给注释者,让他们选择更好地描述集群的摘要。他们使用INCEpTION开发了注释界面,并雇用了额外的计算机科学博士生进行标注。通过测量注释者间的一致性,研究团队确保了摘要的质量和准确性。

确定典型反驳

研究团队为每个态度根源-主题集群确定典型的反驳,这是通过考虑特定的反驳行动来完成的。这一过程分为三个步骤:首先,减少候选典型反驳的数量;其次,手动比较缩减后候选集中的反驳句子对;最后,基于成对比较的分数计算排名,并选择排名最高的候选作为典型反驳。

候选集减少:为了缩减典型反驳的候选集,研究团队采用了两种适用性分类器得出的分数。首先是一个二元分类器,基于自行训练,用于预测一个反驳句子作为典型反驳的整体适用性。其次,考虑到典型反驳的原型性质,他们还使用了SPECIFICITELLER模型来获得特定性分数。该模型是一个预训练的基于特征的模型,用来评估句子是通用的还是具体的。通过这两个步骤,研究团队最终将候选集缩减至1,845个候选。

手动标注:在手动决定典型反驳方面,研究团队设计了一套方法:展示来自特定态度根源和主题集群的≤5个审稿句子,并将这些信息与特定的反驳行动配对。然后,他们随机选择两个反驳句子,这些句子与集群中的任一审稿句子相关,并对应于所选的反驳行动。标注者需要从这对反驳句子中选择更好的一个。对于每个(态度根源、态度主题、反驳行动)三元组的n个反驳句子,成对标注设置需要对n(n − 1)/2对句子进行评判。研究团队雇佣了两名计算机科学博士生进行这项任务。

典型反驳选择:研究团队基于收集的偏好通过注释图排名得出最佳反驳。具体来说,他们为每个根源-主题-行动集群创建了一个有向图,图中的节点是反驳句子。边的方向基于偏好:如果A优于B,则创建A → B的边。然后,他们使用PageRank算法对节点进行排名,每条边的权重为0.5。排名最低的节点,即很少或没有入边的节点,被选为典型反驳。这种方法不仅提高了数据集的质量和实用性,也为未来在类似领域的研究提供了一个有力的方法论参考。

22a0a1cf58352125223b798fb43b4cbb.png

实验分析

研究团队提出了三项新颖的任务,以在其数据集上进行测试。分别是典型反驳评分,审稿意见生成,典型反驳生成。

典型反驳评分

这个任务的目标是给定一个自然语言描述d和一个反驳行动a,对所有反驳r(与特定态度根源-主题集群相关)进行评分,以表明r作为该集群的典型反驳的适用性。

这个任务被视为一个回归问题。只考虑有典型反驳的反驳行动和态度根源-主题集群的组合(50个态度根源-主题集群描述,3,986个反驳句子,其中302个是典型反驳)。使用之前的PageRank分数作为模型训练的预测目标。

结果

  • 从下表可以看出,大多数领域专门化模型的表现优于它们的非专门化对应模型。eea58389f5805560a8281e8dbf8ec6c5.png

  • SciBERTds_all 在所有方面都有最高的皮尔逊相关系数,然而,BERTds_neg 在排名分数方面表现最佳。

  • 使用其他与集群相关的信息,如代表性审稿句子,以及对描述进行释义,可能会带来进一步的收益,这将留待未来研究探究。

审稿描述生成

给定一条同行评审句子rev,任务是生成该句子所属集群的抽象描述d 。

实验设置

  • 数据集由2,332个审稿句子组成,每个句子都属于144个集群之一,并且每个集群都有相关的描述。

  • 采用70/10/20的训练-验证-测试分割。

  • 使用以下序列到序列(seq2seq)模型:BART (bart-large)、Pegasus (pegasus-large) 和 T5 (t5-large)。

  • 对训练周期数e∈{1, 2, 3, 4, 5}和学习率λ∈{1 * 10^-4, 5 * 10^-4, 1 * 10^-5}进行网格搜索,批量大小b = 32。

  • 使用带有5个束的束搜索作为解码策略。

  • 在完全微调设置以及零次和少次(few-shot)场景中进行实验(随机选择次数)。

  • 根据词汇重叠和语义相似性(ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L) 和 BERTscore)报告性能。

结果

  • R-1分数展示在下图中,完整结果在表中。

42f77d1f177c406e747ba5845d833ec0.png 92ca3dc043a84138d7f128f8a89f845b.png
  • 有趣的是,所有模型都表现出非常陡峭的学习曲线,在仅看到一个例子时,根据大多数指标,性能大致翻了一番。

  • 在zero shot和one shot设置中,BART在所有方面表现出色。

  • 但在完全微调模型时,T5的表现最佳。研究团队推测这可能与T5更大的容量有关(BART有406M参数,而T5有770M参数)。

典型反驳生成

给定一条审稿句子rev 和一个反驳a,任务是生成典型反驳c。

实验设置

  • 从2,219个有至少一个行动的典型反驳的审稿句子开始。

  • 输入为将rev和a与分隔符连接在一起,产生17,873个独特的审稿-反驳行动实例。

  • 使用与前面实验相同的超参数、模型和度量标准,并进行完全微调以及零次和少次预测实验。

  • 对这些实验,应用70/10/20的训练-验证-测试分割,以获取训练-验证-测试部分,以典型反驳(302个反驳与17,873个独特实例相连)为层次。

结果

  • 模型间的差异与之前的发现一致:BART在零次和少次设置中表现出色,T5虽然起点最低,但很快赶上其他模型。

8d070d0cb227bfb2e843d31319e2af01.png 43fd667f9a910a4dd519281dda8ec87a.png
  • 模型的表现比以前更加陡峭,并在两次尝试后就似乎达到了一个平台。研究团队认为这与典型反驳的有限多样性有关,以及他们决定在典型反驳层次上进行的训练-测试分割——任务是生成模板,并对这些模板进行概括。看到其中只有几个模板后,模型很快就能抓住一般的要点,但无法超越它们所展示的内容。

结语

在这项工作中,研究团队探索了基于审稿者潜在态度驱动的同行评审中的柔术式论证,为此他们创建了JITSUPEER数据集。这个新颖的数据集包含与典型反驳相连的审稿句子,这些典型反驳可以作为撰写有效同行评审反驳的模板。团队在这个数据集上提出了不同的自然语言处理任务,并对多种基线策略进行了基准测试。JITSUPEER的注释将公开提供,研究团队相信这个数据集将成为促进计算论证领域中有效同行评审反驳写作研究的宝贵资源。


备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

e3a768ad7e95e6b8f15677860d2c48ba.png

id:DLNLPer,记得备注呦

2c9d5742ea0f67d0f677b41c7339abec.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1211121.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

aliyun Rest ful api V3版本身份验证构造

aliyun Rest ful api V3版本身份验证构造 参考官网:https://help.aliyun.com/zh/sdk/product-overview/v3-request-structure-and-signature?spma2c4g.11186623.0.0.787951e7lHcjZb 构造代码 :使用GET请求进行构造,算法使用sha256 使用postm…

多维时序 | MATLAB实现PSO-BiLSTM-Attention粒子群优化双向长短期记忆神经网络融合注意力机制的多变量时间序列预测

多维时序 | MATLAB实现PSO-BiLSTM-Attention粒子群优化双向长短期记忆神经网络融合注意力机制的多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-BiLSTM-Attention粒子群优化双向长短期记忆神经网络融合注意力机制的多变量时间序列预测预测效果基本介绍模型描述程序设计参考…

Python安装第三方库出错完美解决方法

错误 Could not find a version that satisfies the requirement PIL (from versions: none) ERROR: No matching distribution found for PILTry to run this command from the system terminal. Make sure that you use the correct version of pip installed for your Pyth…

Linux:给openlab搭建web网站

httpd服务器建立综合练习 建立网站需求: 1.基于域名 www.openlab.com 可以访问网站内容为 welcome to openlab!!! 2.给该公司创建三个子界面分别显示学生信息,教学资料和缴费网站, (1)、基于 www.openlab.com/stud…

使用Pandas进行数据读写的简易教程

Pandas是一个功能强大且广泛使用的Python库。它提供了一种简单而灵活的方式来读取和写入各种数据格式,包括CSV、Excel、SQL数据库等。本文将介绍如何使用Pandas进行数据的读取和写入操作,帮助你快速上手并高效地处理数据。 一、安装和导入pandas 首先&…

Linux软硬链接

文章目录 🐋1. 建立软硬链接现象🐠2. 软硬链接🪸2.1 软链接🪸2.2 硬链接 🐦3. 应用场景🪹3.1 软链接应用场景🪹3.2 硬链接应用场景 🐋1. 建立软硬链接现象 我们这里给file.txt建立软…

CH12_处理继承关系

函数上移(Pull Up Method) 反向重构:函数下移(Push Down Method) class Employee {/*...*/} class Salesman extends Employee {get name() {/*...*/} } class Engineer extends Employee {get name() {/*...*/} }cla…

AI数字员工创新工作模式丨市女协走进实在智能,沉浸体验RPA Agent智能魅力

11月10日,杭州市女企业家协会组织走进副会长张军燕企业——杭州实在智能科技有限公司,开展“领跑AI时代,做先进企业”人工智能沙龙活动。 本次沙龙是一场真正关注最前沿AI大模型与RPA自动化技术、寻找企业确定性增长的科技盛宴,也…

《深入浅出.NET框架设计与实现》阅读笔记(四)

静态文件系统 通过ASP.NET Core 提供的静态文件模块和静态文件中间件,可以轻松的让应用程序拥有访问静态文件的功能,同时可以基于IFileProvider对象来自定义文件系统,如基于Redis做扩展文件系统 启动静态文件服务 在Program.cs 类中&#x…

Fedora Linux 39 正式版官宣 11 月 发布

导读Fedora Linux 39 正式版此前宣布将于 10 月底发布,不过这款 Linux 发行版面临了一些延期,今天开发团队声称,Fedora Linux 39 正式版将于 11 月 7 日发布。 过查询得知,在近日的 "Go / No-Go" 会议上,开…

国产企业级低代码开发哪个最好?这一款超好用

低代码开发平台(Low-code Development Platform)正在迅速崛起,成为未来软件技术发展的主导趋势。通过使用低代码开发平台,企业能够显著提高开发效率,降低对专业开发人员的依赖,并实现更快速的软件交付和使用…

【从删库到跑路】MySQL数据库 | 全局锁 | 表级锁 | 行级锁

文章目录 🌹简述🎄全局锁⭐数据备份🎈设置全局锁🎈对表进行备份🎈释放锁 🎄表级锁🛸表锁⭐读锁⭐写锁 🛸元数据锁🛸意向锁⭐意向共享锁⭐意向排他锁 🎄行级锁…

某头部通信企业:SDLC+模糊测试,保障数实融合安全发展

某头部通信企业是全球领先的综合通信信息解决方案提供商,为全球电信运营商、政企客户和消费者提供创新的技术与产品解决方案。该企业持续关注核心技术攻关,深入打造系列化标杆项目和价值场景,加强数字化平台的推广应用,加快共建开…

蓝桥杯每日一题2023.11.15

题目描述 此处的快速排序有一个思想:以一个数x来判定这l至r区间的数的大小,如果a[l]小于x就与右侧的a[r]交换,最后x可以将这个区间的数进行一分为二。填空出就是已经将x移动到左部分和右部分之间,来确定二分的一个界点 答案&…

大模型在数据分析场景下的能力评测|进阶篇

做数据分析,什么大模型比较合适? 如何调优大模型,来更好地做数据计算和洞察分析? 如何降低整体成本,同时保障分析体验?10月25日,我们发布了数据分析场景下的大模型能力评测框架(点击…

NovelD: A Simple yet Effective Exploration Criterion论文笔记

NovelD:一种简单而有效的探索准则 1、Motivation 针对稀疏奖励环境下的智能体探索问题,许多工作中采用各种内在奖励(Intrinsic Reward)设计来指导困难探索环境中的探索 ,例如: ICM:基于前向动力学模型的好奇心驱动探索RND&…

外贸客户管理系统是什么?推荐的管理软件?

外贸客户管理系统哪个好用?海洋建站如何选管理系统? 外贸客户管理系统,是一款专为外贸企业设计的客户关系管理系统,旨在帮助外贸企业建立与维护客户关系,提高客户满意度和忠诚度,提升企业业绩。海洋建站将…

机器学习-搜索技术:从技术发展到应用实战的全面指南

在本文中,我们全面探讨了人工智能中搜索技术的发展,从基础算法如DFS和BFS,到高级搜索技术如CSP和优化问题的解决方案,进而探索了机器学习与搜索的融合,最后展望了未来的趋势和挑战,提供了对AI搜索技术深刻的…

属兔人连续两年不顺,运势低迷要化解

属兔人为人生性浪漫,有着美好憧憬, 与人相处的时候总是谦和待人,不会随便发脾气, 也不喜欢与人发生争执,不善于算计别人。 对于自己的另一半,是一个很温暖的人,为人细腻,并且懂得体谅…

ping: www.baidu.com: Name or service not known解决办法

解决服务器无法ping通外网问题 1、问题描述: 配置了网卡信息,发现还是无法访问外网,并报ping: www.baidu.com: Name or service not known信息 2、问题原因: 这就是外网没开通好 3、解决方法: 修改网卡文件&#xff…