NovelD: A Simple yet Effective Exploration Criterion论文笔记

news2024/11/18 5:52:22

NovelD:一种简单而有效的探索准则

1、Motivation

针对稀疏奖励环境下的智能体探索问题,许多工作中采用各种内在奖励(Intrinsic Reward)设计来指导困难探索环境中的探索 ,例如:

  • ICM:基于前向动力学模型的好奇心驱动探索
  • RND:基于随机网络蒸馏驱动的探索
  • Count-Based:基于伪计数驱动的探索

但是本文作者从实验中观察到,如果有多个感兴趣的区域,这些方法有时会很快使智能体被困在一个区域,而无法充分探索其他区域。

2、Introduction

算法使用轨迹中连续状态的NovelD,这个标准在探索和未探索区域之间的边界上提供了很大的内在奖励。

NovelD有以下几点优势:

  1. 几乎没有超参数
  2. 是一种单阶段方法,可以很容易地与任何策略学习方法(例如PPO)相结合
  3. NovelD是渐近一致的:在充分探索之后,它的IR会消失,而RIDE和AMIGo这样的方法则不会。
  4. 与基于计数的方法和RND相比,NovelD优先考虑未探索的边界状态,产生更有效和更广泛的探索模式。

3、方法

在本篇文章中,每一次执行动作后得到的reward表示为:
r t = r t e + α r t i r_t=r_t^e+\alpha r_t^i rt=rte+αrti
intrinsic reward被定义为:
r i ( s t , a t , s t + 1 ) = max ⁡ [ novelty ( s t + 1 ) − α ⋅ novelty ( s t ) , 0 ] r^i(\mathbf{s}_t,\mathbf{a}_t,\mathbf{s}_{t+1})=\max\left[\text{novelty}(\mathbf{s}_{t+1})-\alpha\cdot\text{novelty}(\mathbf{s}_t),0\right] ri(st,at,st+1)=max[novelty(st+1)αnovelty(st),0]
其中α是比例因子,定义一个被探索过的区域为:
{ s : n o v e l t y ( s ) ≤ m } \{\mathbf{s}:\mathrm{novelty}(\mathbf{s})\leq m\} {s:novelty(s)m}
当智能体的探索超过这个区域的边界时,NovelD会给予intrinsic reward。从公式(2)可以看出,当智能体从新状态转回熟悉的状态时,会截取IR以避免负IR。

从等式(2)可以看出,只有当智能体跨越边界时才会关系到IR,当st和st+1都是熟悉的或者陌生的状态时,它们的区别会很小。

但是简单的使用等式(1)会导致智能体在新状态st+1和旧状态st之间来回切换,对此NovelD设置了更为激进的限制:智能体只有在一个episode里第一次访问状态s时才会获得奖励。于是NovelD的intrinsic reward为:
r i ( s t , a t , s t + 1 ) = max ⁡ [ novelty ( s t + 1 ) − α ⋅ novelty ( s t ) , 0 ] ∗ I { N e ( s t + 1 ) = 1 } r^i(\mathbf{s}_t,\mathbf{a}_t,\mathbf{s}_{t+1})=\max\left[\text{novelty}(\mathbf{s}_{t+1})-\alpha\cdot\text{novelty}(\mathbf{s}_t),0\right]*\mathbb{I}\{N_e(\mathbf{s}_{t+1})=1\} ri(st,at,st+1)=max[novelty(st+1)αnovelty(st),0]I{Ne(st+1)=1}
Ne代表一个episode中的状态s的计数,每个episode会重置这个计数。而novelty算子是life-long的。

novelty使用RND方法来计算:
n o v e l t y ( s t ) = n o v e l t y ( s t ; w ) : = ∥ ϕ ( s t ) − ϕ w ′ ( s t ) ∥ 2 \mathrm{novelty}(\mathbf{s}_t)=\mathrm{novelty}(\mathbf{s}_t;\boldsymbol{w}):=\|\phi(\mathbf{s}_t)-\phi_{\boldsymbol{w}}^{\prime}(\mathbf{s}_t)\|_2 novelty(st)=novelty(st;w):=ϕ(st)ϕw(st)2
计算出st的novelty后,就对w执行一次更新来最小化novelty(st;w)。

NovelD是一个一致性算法,经过充分的探索,内在奖励收敛于0。

对于将intrinsic reward定义为:
∥ ψ ( s t ) − ψ ( s t + 1 ) ∥ \|\psi(\mathbf{s}_t)-\psi(\mathbf{s}_{t+1})\| ψ(st)ψ(st+1)
的方法,通常会面临渐进不一致性问题,这是因为在足够多的探索使ψ收敛后,由于神经网络无法完全拟合的特性,智能体总是可以获得非零IR,即当N—>∞时IR永远不—>0。因此,学习策略没有最大化外部奖励re,偏离了强化学习的目标。

但是NovelD方法是渐进一致的。

4、实验

1、对于所有实验,使用PPO作为基础RL算法,同时将NovelD与其他各种生成intrinsic reward的方法进行比较。

在实验的一半任务中,所有的基线结果都是零奖励。在《NetHack》中,NovelD取得了SOTA。

实验主要使用MiniGird中的三个具有挑战性的环境:多房间(MR),关键走廊(KC)和受阻迷宫(OM)。

在这里插入图片描述

可以从图中看到,NovelD设法解决了MiniGrid中的所有静态环境。相比之下,所有的基线只能解决中等水平的任务,而不能在更困难的任务上取得任何进展。

2、仅在环境中使用IR进行探索(无外部奖励),NovelD导致了更集中的边界探索和更广泛的状态覆盖。

为了研究NovelD是否在MiniGrid中产生更广泛的状态覆盖,实验在一个固定的MRN7S8环境中测试了NovelD和RND。同时,定义了两个指标来衡量勘探策略的有效性:

  1. 每个状态的探视次数都超过训练次数

  2. 每个房间的访问熵:
    H ( ρ ′ ( s ) )  where  ρ ′ ( s ) = N ( s ) ∑ s ∈ S r N ( s ) \mathcal{H}(\rho'(\mathbf s))\text{ where }\rho'(\mathbf s)=\frac{N(\mathbf s)}{\sum_{\mathbf s\in\mathcal{S}_r}N(\mathbf s)} H(ρ(s)) where ρ(s)=sSrN(s)N(s)

实验结果显示,NovelD的每个房间熵分布大于RND。这表明与RND相比,NovelD鼓励对状态进行更统一的探索。

实验说明,当两个房间之间的门成为探索的瓶颈时,NovelD的IR专注于解决这个问题。

3、消融实验

文章设计实验寻找最佳的比例和裁剪系数,公式:
r i ( s t , a t , s t + 1 ) = max ⁡ [ novelty ( s t + 1 ) − α ⋅ novelty ( s t ) , β ] r^i(\mathbf{s}_t,\mathbf{a}_t,\mathbf{s}_{t+1})=\max\left[\text{novelty}(\mathbf{s}_{t+1})-\alpha\cdot\text{novelty}(\mathbf{s}_t),\beta\right] ri(st,at,st+1)=max[novelty(st+1)αnovelty(st),β]
实验得出当α=0.5,β=0时效果最好。

文章设计实验验证不同特征提取方式对NovelD效果的影响,分别有:ICM、Random、DBC以及Successor Features。最终发现只有Random和Successor Features表现得还不错。

5、结论

NovelD方法也适用于随机环境,虽然到达随机环境的边界本身是一个难题,但通过在边界状态上设置高IR并使用RL算法训练代理,策略将更频繁地到达这些边界状态。

NovelD方法由于采用RND方法来进行新颖性度量,所以对于白噪声问题有一定的缓解,而实验也表明在《MiniGrid》、《Atari Games》和《NetHack》中,都没有看到由于电视噪音问题导致的NovelD的性能下降。

在多种环境中,NovelD显示了更广泛的状态覆盖,并将IR的重点放在边界状态上。

6、留存的问题

没有在一些连续RL领域测试NovelD的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1211094.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

外贸客户管理系统是什么?推荐的管理软件?

外贸客户管理系统哪个好用?海洋建站如何选管理系统? 外贸客户管理系统,是一款专为外贸企业设计的客户关系管理系统,旨在帮助外贸企业建立与维护客户关系,提高客户满意度和忠诚度,提升企业业绩。海洋建站将…

机器学习-搜索技术:从技术发展到应用实战的全面指南

在本文中,我们全面探讨了人工智能中搜索技术的发展,从基础算法如DFS和BFS,到高级搜索技术如CSP和优化问题的解决方案,进而探索了机器学习与搜索的融合,最后展望了未来的趋势和挑战,提供了对AI搜索技术深刻的…

属兔人连续两年不顺,运势低迷要化解

属兔人为人生性浪漫,有着美好憧憬, 与人相处的时候总是谦和待人,不会随便发脾气, 也不喜欢与人发生争执,不善于算计别人。 对于自己的另一半,是一个很温暖的人,为人细腻,并且懂得体谅…

ping: www.baidu.com: Name or service not known解决办法

解决服务器无法ping通外网问题 1、问题描述: 配置了网卡信息,发现还是无法访问外网,并报ping: www.baidu.com: Name or service not known信息 2、问题原因: 这就是外网没开通好 3、解决方法: 修改网卡文件&#xff…

KODExplorer中ace.js代码编辑器中自定义PHP提示片段

目录 KODExplorerace.js参考 KODExplorer 这是搭建云盘工具,该工具可以作为在线开发工具使用,其中使用了ace.js作为编辑器,这里主要讲解ace.js编辑器中如何自定义代码提示下载旧版本,再升级到新版本,直接下载新版本没…

【华为OD题库-022】阿里巴巴找黄金宝箱(IV)-java

题目 一贫如洗的椎夫阿里巴巴在去砍柴的路上,无意中发现了强盗集团的藏宝地,藏宝地有编号从0-N的子,每个箱子上面有一个数字,箱子排列成一个环,编号最大的箱子的下一个是编号为0的箱子。请输出每个箱子贴的数字之后的第…

wx小程序web-view uniapp H5

最近微信小程序对有视频播放的审核严,需要提供“文娱类资质”。而申请这个资质比较繁琐。所以我们在小程序上用web-view做跳转到H5,这是小程序关于web-view文档说明https://developers.weixin.qq.com/miniprogram/dev/component/web-view.html 开发前配…

软件性能测试学习笔记(LoadRunner):从零开始

文章目录 概述LoadRunner的使用创建编辑脚本(Virtual User Generator)集合点思考时间事务检查点关联参数化 运行负载测试(Controller) 性能测试报告场景设置表格测试指标记录表 其他的杂谈内容 概述 软件的性能测试与软件的功能测…

荧光量子效率积分球的优势是什么

荧光量子效率积分球是一种测量设备,可以用于测量荧光材料在特定波长下的量子效率。它由一个具有高朗伯特性的漫反射PTFE材料制成,具有高达99%的反射率和朗伯特性。积分球有三个开口,分别为光入射口、样品口和光出射口。光入射口设置有一准直镜…

2023年【电工(高级)】考试报名及电工(高级)考试试卷

题库来源:安全生产模拟考试一点通公众号小程序 2023年【电工(高级)】考试报名及电工(高级)考试试卷,包含电工(高级)考试报名答案和解析及电工(高级)考试试卷…

Linux 读写权限的配置

文章目录 Linux文件权限详解 一、文件权限二、修改文件访问权限的方法三、UMASK值四、三种特殊权限suid、sgid、sticky(sticky权限工作环境中相对常用)五、ACL访问控制列表六、文件权限操作的常用命令 Linux文件权限详解 Linux系统中不仅是对用户与组根…

锐捷 Smartweb管理系统命令注入漏洞复现 [附POC]

文章目录 锐捷 Smartweb管理系统命令注入漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 锐捷 Smartweb管理系统命令注入漏洞复现 [附POC] 0x01 前言 免责声明:请勿利用文章内的相关技术从事非法测…

学生台灯护眼灯需要多少W?小学生合适的五款护眼台灯推荐

台灯如何选择,随着人们生活水平的提高及科技的不断进步,台灯的品质也得到了极大的提高,在生活中很多时候都需要使用台灯,但是市面上的台灯那么多,台灯如何选择。学生护眼台灯选择多少瓦比较好呢?选择12w-20…

一文搞懂Transformer

近期Transformer系列模型的出现,增加了CV领域的多样性。但是Transformer这一不同领域的模型对学习者来说需要一个细致的学习过程.下面就是本菜鸟总结学习路线。 Transformer是基于attention机制。而attention机制又在Encoder、Decode中。本篇博客将从Attention->…

洗内裤的小洗衣机买啥牌子的?口碑好的迷你洗衣机推荐

迷你洗衣机是一种小型的家用洗衣设备,主要是由于其小巧便携而且实用性高的特点,非常适用于小户型家庭、单身人士、学生宿舍等场所,如今随着迷你洗衣机在市场上越来越受到消费者的青睐。那么,迷你洗衣机哪个牌子好用又不贵呢&#…

RabbitMQ-高级篇-黑马程序员

代码: 链接: https://pan.baidu.com/s/1nQBIgB_SbzoKu_XMWZ3JoA?pwdaeoe 提取码:aeoe 在昨天的练习作业中,我们改造了余额支付功能,在支付成功后利用RabbitMQ通知交易服务,更新业务订单状态为已支付。 但…

uniapp开发ios上线(在win环境下使用三方)

苹果 1、win环境下无法使用苹果os编译器所以使用第三方上传工具,以下示例为 初雪云 (单次收费,一元一次) 初雪云(注册p12证书):https://www.chuxueyun.com/#/pages/AppleCertificate 苹果开发者…

LeetCode - 232.用栈实现队列 225.用队列模拟实现栈 (C语言,配图)

目录 232.用栈实现队列 225.用队列模拟实现栈 注:本文是基于C语言实现的代码,所以栈和队列是在力扣上制造实现的,如果你使用C等语言,可以忽略前面相当大部分的代码。 在栈模拟实现栈和队列之前,我们先来复习一下栈和…

【LeetCode】每日一题 2023_11_14 阈值距离内邻居最少的城市(Floyd 最短路算法)

文章目录 刷题前唠嗑题目:阈值距离内邻居最少的城市题目描述代码与解题思路随机挑选一个大佬的题解 CV 结语 刷题前唠嗑 LeetCode? 启动!!! 今天的题目也是重量级,看到这个题目的名字,看到这张图&#xf…

MySQL My.cnf参数梳理与延伸 (MYSQL 8 cache and buffer类)

开头还是介绍一下群,如果感兴趣PolarDB ,MongoDB ,MySQL ,PostgreSQL ,Redis, Oceanbase, Sql Server等有问题,有需求都可以加群群内有各大数据库行业大咖,CTO,可以解决你的问题。加群请联系 liuaustin3 ,(…