基于回溯搜索算法优化概率神经网络PNN的分类预测 - 附代码

news2025/1/23 2:20:01

基于回溯搜索算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于回溯搜索算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于回溯搜索优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用回溯搜索算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于回溯搜索优化的PNN网络

回溯搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/108366901

利用回溯搜索算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

回溯搜索参数设置如下:

%% 回溯搜索参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,回溯搜索-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1205112.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二维码智慧门牌管理系统升级解决方案:数据可视化助力运营精准决策

文章目录 前言一、升级版二维码智慧门牌管理系统的特点二、数据可视化助力运营精准决策 前言 随着科技的不断进步,传统的门牌管理系统已经无法满足现代社会的需求。为了提高管理效率,减少人力成本,我们引入了升级版的二维码智慧门牌管理系统…

[PyTorch][chapter 62][强化学习-基本概念]

前言: 目录: 强化学习概念 马尔科夫决策 Bellman 方程 格子世界例子 一 强化学习 强化学习 必须在尝试之后,才能发现哪些行为会导致奖励的最大化。 当前的行为可能不仅仅会影响即时奖赏,还有影响下一步奖赏和所有奖赏 强…

如何应对招聘中的职业性格测评?

很多同学听说要做性格测试,第一反应是如何让自己的性格让HR看起来更好....没办法为了顺利入职,咱不能老实作答,因为性格测评搞不好是真刷人的,刷人的(无视你的专业能力和笔试成绩)..... 可是....很多性格测…

eNSP-打开华为USG6000V1防火墙web管理页面方法

一、本地打开防火墙web管理页面 1.先在ensp中启动USG6000V1防火墙,启动后,需要输入原始username和password(username:admin,password:Admin123),并修改原始密码后,才能配…

SQL学习(CTFhub)整数型注入,字符型注入,报错注入 -----手工注入+ sqlmap注入

目录 整数型注入 手工注入 为什么要将1设置为-1呢? sqlmap注入 sqlmap注入步骤: 字符型注入 手工注入 sqlmap注入 报错注入 手工注入 sqlmap注入 整数型注入 手工注入 先输入1 接着尝试2,3,2有回显,而3没有回显…

做一个springboot用户信息模块

目录 用户信息部分 1、获取用户详细信息 前言 代码分析 代码实现 测试 2、更新用户信息 前言 代码实现 测试 3、更新用户头像 前言 代码实现 测试 4、更新用户密码 前言 代码实现 测试 用户信息部分 1、获取用户详细信息 前言 承接上一篇博客登录注册功能…

快速批量去除文件夹名称中多余重复文字!一键轻松优化文件夹命名!

您是否曾经因为文件夹名称中多余重复文字而烦恼?是否因为文件夹重命名而浪费大量时间?现在,我们为您推荐一款全新的文件夹批量改名工具——快速批量去除文件夹名称中多余重复文字,轻松实现文件夹改名优化,让您的整理效…

Leetcode_2:两数相加

题目描述: 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外&#xff…

106.am40刷机(linux)折腾记2-前期的准备工作2-软件使用

最终的目标是刷入firefly的3399的镜像,同时更新内核到linux5.10版本(4.4的内核应该是相同的方法,我目前没有去折腾,暂时不用了)。 1. 平台: rk3399 am40 4g32g 2. 内核:暂无 3. 交叉编译工…

数据结构----顺序栈的操作

1.顺序栈的存储结构 typedef int SElemType; typedef int Status; typedef struct{SElemType *top,*base;//定义栈顶和栈底指针int stacksize;//定义栈的容量 }SqStack; 2.初始化栈 Status InitStack(SqStack &S){//初始化一个空栈S.basenew SElemType[MAXSIZE];//为顺序…

macOS文本编辑器 BBEdit 最新 for mac

BBEdit是一款功能强大的文本编辑器,适用于Mac操作系统。它由Bare Bones Software开发,旨在为开发者和写作人员提供专业级的文本编辑工具。 以下是BBEdit的一些主要特点和功能: 多语言支持:BBEdit支持多种编程语言和标记语言&…

jstack java堆栈跟踪工具

jstack java堆栈跟踪工具 1、jstack介绍 jstack(stack trace for java)是java虚拟机自带的一种堆栈跟踪工具。 jstack主要用于生成java虚拟机当前时刻的线程快照,线程快照是当前java虚拟机内每一条线程正在执行的方法 堆栈的集合&#xf…

信息安全工程师软考知识点

文章目录 知识点总结2023软考总结选择题问答题 知识点总结 军用不对外公开的信息系统安全等级至少应该>三级 数据中心的耐火等级不应低于二级 政府网站的信息安全等级原则上不应低于二级第一代交换机以集线器为代表,工作在OSI物理层 第二代交换机以太网交换机&a…

关于论文图表目录和交叉引用的使用小结

目录 1 题注用法 2 交叉引用 最近在写论文,遇到不少Word使用的问题(错误!文档中没有指定样式的文字。) 网上其实也有很多解决方案但我当时还是折腾了几个小时才整出来图目录,以下是针对我目前使用的感觉简明很多的方法。 1 题注用法 1) 假…

Selenium+JQuery定位方法及应用

SeleniumJQuery定位方法及应用 1 JQuery定位说明1.1 JQuery定位方法1.2 JQuery最常用的三个操作1.3 JQuery一个示例1.3.1 用户名输入框1.3.2 密码输入框1.3.3 登陆按钮1.3.4 完整代码 2 JQuery选择器2.1 常用选择器列表2.2 思考 1、关于Selenium提供了很多元素定位方法&#xf…

解决计算中msvcp120.dll丢失问题,总结5个有效的方法

msvcp120.dll是Microsoft Visual C 2013 Redistributable中的一个动态链接库文件,它提供了许多重要的函数和类,用于支持各种应用程序的正常运行。当这个文件丢失或损坏时,可能会导致一些应用程序无法启动或运行错误。 msvcp120.dll的属性 文件…

ssm826基于ssm的电影评论系统+vue

ssm826基于ssm的电影评论系统vue 交流学习 ​​​​​​​ 演示 项目功能演示: ————————————————

【数据分享】我国雏鹰企业数据(excel格式\shp格式)

企业是经济活动的参与主体。一个城市的企业数量决定了这个城市的经济发展水平!比如一个城市的金融企业较多,那这个城市的金融产业肯定比较发达;一个城市的制造业企业较多,那这个城市的制造业肯定比较发达。 本次我们为大家带来的…

MSVCP140_1.dll,是什么意思?msvcp140_1.dll丢失的解决方法分享

今天我在打开电脑一款软件时候,突然提示‘’msvcp140_1.dll丢失‘’我不知道怎么办,经过我几天的努力终于找到msvcp140_1.dll文件的解决方法,也成功解决这个问题,解决了我的困扰,也成功找到msvcp140_1.dll为什么会丢失…

关于企业海外Social平台营销布局,你需要了解这三件事

01 企业Social营销布局模式 Social营销走到现在,早已进入了标准配置期。任何企业和组织,进行营销宣传的时候都会在社媒社交平台上创建账号和运营。目前,海外Social平台营销模式基本分为四类: 官方社媒账号运营:以Hoot…