1 概述
1.1 opencv介绍
OpenCV是Open Source Computer Vision Library(开源计算机视觉库)的简称,由Intel公司在1999年提出建立,现在由Willow Garage提供运行支持,它是一个高度开源发行的计算机视觉库,可以实现Windows、Linux、Mac等多平台的跨平台操作。opencv是一个用于图像处理、分析、机器视觉方面的开源函数库,已经成为学习计算机视觉强大的工具。在入侵检测、特定目标跟踪、目标检测、人脸检测、人脸识别、人脸跟踪等领域,opencv可谓大显身手。在这篇文章中,主要使用opencv进行银行卡号识别。
1.2 银行卡号识别步骤
银行卡号的识别过程,主要包含读入图片的基本图像操作,用模板去匹配处理后的银行卡,最终识别出银行卡的卡号。所涉及的图像操作包括:灰度转换、二值转换、阈值分割、轮廓检测、礼帽操作、梯度运算、闭操作、模板匹配。
1.2.1 预处理模板图像
首先需要将模板里的数字单独切出来,然后把银行卡上的数字也单独切出来,最后对银行卡的数字一个一个对比模板(0-9,10个数字)。
原始图像如下:
存储路径为:"../data/card_template.jpg"
假设把模板的每个数字切成矩形,可以先对每个数字求外轮廓,然后根据轮廓可得外接矩形,便可切出,其中对于外轮廓处理需传入二值图。于是步骤如下:
- 读入图像模板
template = cv2.imread('../data/card_template.jpg')
ShowImage('template', template)
- 转化为灰度图
# 将图像转化为灰度图
image_Gray = cv2.cvtColor(template, cv2.COLOR_RGB2GRAY)
ShowImage('gray', image_Gray)
- 转化为二值图
# 转换为二值化图像,[1]表示返回二值化图像,[0]表示返回阈值177
image_Binary = cv2.threshold(image_Gray, 177, 255, cv2.THRESH_BINARY_INV)[1]
ShowImage('binary', image_Binary)
- 画出0-9这10个数字的外轮廓
# 提取轮廓
refcnts, his = cv2.findContours(image_Binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(template, refcnts, -1, (0,0,255), 2)
ShowImage('contour', template)
- 计算外接矩形并且resize成合适大小
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
# 计算外接矩形并且resize成合适大小
(x, y, w, h) = cv2.boundingRect(c) #外接矩形
roi = ref[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
# 每一个数字对应每一个模板
digits[i] = roi
1.2.2 预处理银行卡图像
对于银行卡图像,需要过滤掉背景,保留主要信息(下文1-6步)。上文模板是按矩形切出来的,那么卡号也按矩形切割,便于匹配。银行卡卡号位置是四位一组,可以先处理一组,再对每一组的每一个数字切割,进行模板匹配。其中可以通过长宽比过滤掉银行卡上不是卡号的其他信息。
银行卡图片存储路径:“../data/credit03.jpg”
- 读入需识别的银行卡并化为灰度图
# 读取图像,进行预处理
image = cv2.imread("../data/credit03.jpg")
ShowImage('card', image)
显示结果如下:
image = resize(image, width=300)
# 将图像转化为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ShowImage('card_gray', gray)
显示结果如下:
- 礼帽操作:礼帽操作可以突出更明亮的区域(原始输入-开运算(先腐蚀再膨胀))
# 通过顶帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
ShowImage('tophat_card', tophat)
显示结果如下:
-
梯度运算(Sobel算子):边缘检测,可计算出轮廓
gradx = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
grady = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=0, dy=1, ksize=-1)
gradx = np.absolute(gradx)
minVal = np.min(gradx)
maxVal = np.max(gradx)
# (minVal, maxVal) = (np.min(gradx), np.max(gradx))
# 保证值的范围在0-255之间
gradx = (255 * ((gradx - minVal) / (maxVal - minVal)))
gradx = gradx.astype("uint8")
print(np.array(gradx).shape)
ShowImage('gradx_card', gradx)
显示结果如下:
- 闭操作:通过闭操作(先膨胀,再腐蚀)将数字连在一起,便于后面求矩形框
# 通过闭操作,先膨胀后腐蚀,将数字连接在一块
gradx = cv2.morphologyEx(gradx, cv2.MORPH_CLOSE,rectKernel)
ShowImage('gradx_card', gradx)
显示结果如下:
- 阈值分割:利用阈值对图片进行二值化处理,聚焦处理部分
# THRESH_OTSU会自动寻找合适的阈值,适合双峰,需要把阈值设置为0
thresh = cv2.threshold(gradx, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
ShowImage('thresh_card', thresh)
显示结果如下:
- 再进行闭操作:把图中连接的数字填饱满一点
# 再来一个闭合操作,填充白框内的黑色区域
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
ShowImage('thresh2_card', thresh)
显示结果如下:
-
计算外轮廓:经过上文一系列操作,对银行卡中是数字的地方有了清晰的候选,同处理模板对象一样把可能是数字的地方通过外轮廓把全部矩形框画出来。后续再做筛选即可。
# 计算轮廓
threshCnts, his = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img, cnts, -1, (0,0,255), 2)
ShowImage('contour_card', cur_img)
显示结果如下:
- 计算外接矩形并且筛选符合的矩形框
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts): # 函数用于遍历序列中的元素以及它们的下标
# 计算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w/float(h)
# 选择合适的区域,根据实际任务来,这里是四个数字为一组
if ar > 2.5 and ar < 5.0:
if (w > 40 and w < 85) and (h > 10 and h < 20):
# 把符合的留下
locs.append((x,y,w,h))
# 将符合的轮廓根据x的值,从左到右排序
locs = sorted(locs, key=lambda x: x[0])
- 对每一个矩形框进行单独处理
output =[]
# 遍历轮廓中的每一个数字
for (i,(gx, gy, gw, gh)) in enumerate(locs):
# 初始化链表
groupOutput = []
# 根据坐标提取每一个组,往外多取一点,要不然看不清楚
group = gray[gy-5:gy+gh+5,gx-5:gx+gw+5]
ShowImage('group', group)
# 预处理
group = cv2.threshold(group, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] # 二值化
ShowImage('group', group)
# 找到每一组的轮廓
digitCnts, his = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# digitCnts = sortContours(digitCnts, method="LefttoRight")[0]
# 对找到的轮廓进行排序
digitCnts = sort_contours(digitCnts, method="left-to-right")[0]
1.2.3 模板匹配计算得分
# 计算每一组中的每一个数值
for c in digitCnts:
# 找到当前数值的轮廓,resize成合适的大小
(x,y,w,h) = cv2.boundingRect(c)
roi = group[y:y+h, x:x+w]
roi = cv2.resize(roi, (57,88))
ShowImage('roi', roi)
scores = []
for(digit, digitROI) in digits.items():
# 模板匹配
#
result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score)
# 得到最合适的数字
groupOutput.append(str(np.argmax(scores)))
1.2.4 绘制结果
# 画矩形和字体
cv2.rectangle(image, (gx - 5, gy - 5), (gx+gw+5, gy+gh+5), (0,0,255),1)
cv2.putText(image, "".join(groupOutput), (gx, gy-15), cv2.FONT_HERSHEY_SIMPLEX,0.65, (0,0,255),2)
# 得到结果
output.extend(groupOutput)
2 银行卡号识别完整代码
import cv2
import numpy as np
def ShowImage(name, image):
cv2.imshow(name, image)
cv2.waitKey(0) # 等待时间,0表示任意键退出
cv2.destroyAllWindows()
def sort_contours(cnts, method="left-to-right"):
# reverse = False 表示升序,若不指定reverse则默认升序
reverse = False
i = 0
if method == "right-to-left" or method == "bottom-to-top":
reverse = True # reverse = True 表示降序
if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
# 用一个最小的矩形,把找到的形状包起来,用x,y,h,w表示
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
# zip函数用于打包可迭代数据,得到最终输出的cnts和boundingBoxes
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse))
return cnts, boundingBoxes
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2] # 获取图像的高度和宽度
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter) # 使用cv库的resize函数
return resized
template = cv2.imread('../data/card_template.jpg')
ShowImage('template', template)
# 将图像转化为灰度图
image_Gray = cv2.cvtColor(template, cv2.COLOR_RGB2GRAY)
ShowImage('gray', image_Gray)
# 转换为二值化图像,[1]表示返回二值化图像,[0]表示返回阈值177
image_Binary = cv2.threshold(image_Gray, 177, 255, cv2.THRESH_BINARY_INV)[1]
ShowImage('binary', image_Binary)
# 提取轮廓
refcnts, his = cv2.findContours(image_Binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(template, refcnts, -1, (0, 0, 255), 2)
ShowImage('contour', template)
refcnts = sort_contours(refcnts, method="left-to-right")[0]
digits = {}
# 遍历每个轮廓
for (i, c) in enumerate(refcnts): # enumerate函数用于遍历序列中的元素以及它们的下标
(x, y, w, h) = cv2.boundingRect(c)
roi = image_Binary[y:y+h, x:x+w]
roi = cv2.resize(roi, (57, 88))
digits[i] = roi
# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9,3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
# 读取图像,进行预处理
image = cv2.imread("../data/credit03.jpg")
ShowImage('card', image)
image = resize(image, width=300)
# 将图像转化为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ShowImage('card_gray', gray)
# 通过顶帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
ShowImage('tophat_card', tophat)
gradx = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
grady = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=0, dy=1, ksize=-1)
gradx = np.absolute(gradx)
minVal = np.min(gradx)
maxVal = np.max(gradx)
# (minVal, maxVal) = (np.min(gradx), np.max(gradx))
# 保证值的范围在0-255之间
gradx = (255 * ((gradx - minVal) / (maxVal - minVal)))
gradx = gradx.astype("uint8")
print(np.array(gradx).shape)
ShowImage('gradx_card', gradx)
# 通过闭操作,先膨胀后腐蚀,将数字连接在一块
gradx = cv2.morphologyEx(gradx, cv2.MORPH_CLOSE,rectKernel)
ShowImage('gradx_card', gradx)
# THRESH_OTSU会自动寻找合适的阈值,适合双峰,需要把阈值设置为0
thresh = cv2.threshold(gradx, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
ShowImage('thresh_card', thresh)
# 再来一个闭合操作,填充白框内的黑色区域
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
ShowImage('thresh2_card', thresh)
# 计算轮廓
threshCnts, his = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img, cnts, -1, (0,0,255), 2)
ShowImage('contour_card', cur_img)
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts): # 函数用于遍历序列中的元素以及它们的下标
# 计算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w/float(h)
# 选择合适的区域,根据实际任务来,这里是四个数字为一组
if ar > 2.5 and ar < 5.0:
if (w > 40 and w < 85) and (h > 10 and h < 20):
# 把符合的留下
locs.append((x,y,w,h))
# 将符合的轮廓根据x的值,从左到右排序
locs = sorted(locs, key=lambda x: x[0])
output =[]
# 遍历轮廓中的每一个数字
for (i,(gx, gy, gw, gh)) in enumerate(locs):
# 初始化链表
groupOutput = []
# 根据坐标提取每一个组,往外多取一点,要不然看不清楚
group = gray[gy-5:gy+gh+5,gx-5:gx+gw+5]
ShowImage('group', group)
# 预处理
group = cv2.threshold(group, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] # 二值化
ShowImage('group', group)
# 找到每一组的轮廓
digitCnts, his = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# digitCnts = sortContours(digitCnts, method="LefttoRight")[0]
# 对找到的轮廓进行排序
digitCnts = sort_contours(digitCnts, method="left-to-right")[0]
# 计算每一组中的每一个数值
for c in digitCnts:
# 找到当前数值的轮廓,resize成合适的大小
(x,y,w,h) = cv2.boundingRect(c)
roi = group[y:y+h, x:x+w]
roi = cv2.resize(roi, (57,88))
ShowImage('roi', roi)
scores = []
for(digit, digitROI) in digits.items():
# 模板匹配
#
result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score)
# 得到最合适的数字
groupOutput.append(str(np.argmax(scores)))
# 画矩形和字体
cv2.rectangle(image, (gx - 5, gy - 5), (gx+gw+5, gy+gh+5), (0,0,255),1)
cv2.putText(image, "".join(groupOutput), (gx, gy-15), cv2.FONT_HERSHEY_SIMPLEX,0.65, (0,0,255),2)
# 得到结果
output.extend(groupOutput)
ShowImage('card_result', image)
运行结果: