竞赛选题 深度学习的动物识别

news2024/11/24 8:55:42

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的动物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理

import cv2 as cv
import os
import numpy as np

import random
import pickle

import time

start_time = time.time()

data_dir = './data'
batch_save_path = './batch_files'

# 创建batch文件存储的文件夹
os.makedirs(batch_save_path, exist_ok=True)

# 图片统一大小:100 * 100
# 训练集 20000:100个batch文件,每个文件200张图片
# 验证集 5000:一个测试文件,测试时 50张 x 100 批次

# 进入图片数据的目录,读取图片信息
all_data_files = os.listdir(os.path.join(data_dir, 'train/'))

# print(all_data_files)

# 打算数据的顺序
random.shuffle(all_data_files)

all_train_files = all_data_files[:20000]
all_test_files = all_data_files[20000:]

train_data = []
train_label = []
train_filenames = []

test_data = []
test_label = []
test_filenames = []

# 训练集
for each in all_train_files:
    img = cv.imread(os.path.join(data_dir,'train/',each),1)
    resized_img = cv.resize(img, (100,100))

    img_data = np.array(resized_img)
    train_data.append(img_data)
    if 'cat' in each:
        train_label.append(0)
    elif 'dog' in each:
        train_label.append(1)
    else:
        raise Exception('%s is wrong train file'%(each))
    train_filenames.append(each)

# 测试集
for each in all_test_files:
    img = cv.imread(os.path.join(data_dir,'train/',each), 1)
    resized_img = cv.resize(img, (100,100))

    img_data = np.array(resized_img)
    test_data.append(img_data)
    if 'cat' in each:
        test_label.append(0)
    elif 'dog' in each:
        test_label.append(1)
    else:
        raise Exception('%s is wrong test file'%(each))
    test_filenames.append(each)

print(len(train_data), len(test_data))

# 制作100个batch文件
start = 0
end = 200
for num in range(1, 101):
    batch_data = train_data[start: end]
    batch_label = train_label[start: end]
    batch_filenames = train_filenames[start: end]
    batch_name = 'training batch {} of 15'.format(num)

    all_data = {
    'data':batch_data,
    'label':batch_label,
    'filenames':batch_filenames,
    'name':batch_name
    }

    with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:
        pickle.dump(all_data, f)

    start += 200
    end += 200

# 制作测试文件
all_test_data = {
    'data':test_data,
    'label':test_label,
    'filenames':test_filenames,
    'name':'test batch 1 of 1'
    }

with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:
    pickle.dump(all_test_data, f)

end_time = time.time()
print('制作结束, 用时{}秒'.format(end_time - start_time))

5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')

flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

5.3 tensorflow计算图可视化

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)

# 图片输入网络中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步

acc_list = []
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for i in range(TRAIN_STEP):
        train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)

        eval_ops = [self.loss, self.acc, self.train_op]
        eval_ops_results = sess.run(eval_ops, feed_dict={
            self.x:train_data,
            self.y:train_label,
            self.keep_prob:0.7
        })
        loss_val, train_acc = eval_ops_results[0:2]

        acc_list.append(train_acc)
        if (i+1) % 100 == 0:
            acc_mean = np.mean(acc_list)
            print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
                i+1,loss_val,train_acc,acc_mean
            ))
        if (i+1) % 1000 == 0:
            test_acc_list = []
            for j in range(TEST_STEP):
                test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
                acc_val = sess.run([self.acc],feed_dict={
                    self.x:test_data,
                    self.y:test_label,
                    self.keep_prob:1.0
            })
            test_acc_list.append(acc_val)
            print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
                i+1, np.mean(test_acc_list)
            ))
    # 保存训练后的模型
    os.makedirs(SAVE_PATH, exist_ok=True)
    self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1203006.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

APS、SAP解析BOM批量核对(我的APS项目三)

APS提供了解析BOM接口 SAP从CU50中解析了BOM 博主开发了一个程序,把两边的BOM数据拉到一起来比对,从最初的一个车型,增加到5个车型,最后成型是30个车型,几乎覆盖了F1、F2的全部车型。 并且程序还实现了消息提醒功能&…

PLM/ERP/APS/MES/SRM/CRM/WMS/QMS

参考一 ERP 1 什么是ERP ERP的英文全称是“Enterprise Resource Planning”,从字面上看,它的意思就是“企业资源计划”。ERP最开始是由美国著名的计算机技术咨询和评估集团Garter Group提出的一整套企业管理系统体系标准。 2 ERP的发展历程&#xff08…

【数据仓库】数仓分层方法

文章目录 一. 数仓分层的意义1. 清晰数据结构。2. 减少重复开发3. 方便数据血缘追踪4. 把复杂问题简单化5. 屏蔽原始数据的异常6. 数据仓库的可维护性 二. 如何进行数仓分层?1. ODS层2. DW层2.1. DW层分类2.2. DWD层2.3. DWS 3. ADS层 4、层次调用规范 一. 数仓分层…

自然语言处理实战项目21-两段文本的查重功能,返回最相似的文本字符串,可应用于文本查重与论文查重

大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目21-两段文本的查重功能,返回最相似的文本字符串,可应用于论文查重。本文想实现一种文本查重功能,通过输入两段文本,从中找出这两段文本中最相似的句子。这项技术有助于检测抄袭、抄袭的论文和文章,提高知识创新…

js设置图片放大缩小拖动

效果: 思路: 在外层box进行相对定位relative,img设置绝对定位absolute;通过监听滚轮事件(wheel),设置样式缩放中心点(transformOrigin)和缩放转换(transform);获取到图片大小和位置,设置对应图片宽度高度和top、left偏移;鼠标按下事件(mousedown)和鼠标移动事…

【教3妹学编程-算法题】给小朋友们分糖果 II

3妹:1 8得8,2 816, 3 8妇女节… 2哥 : 3妹,在干嘛呢 3妹:双11不是过了嘛, 我看看我这个双十一买了多少钱, 省了多少钱。 2哥 : 我可是一分钱没买。 3妹:我买了不少东西, …

WS2812B彩灯 STM32HAL库开发:PWM+DMA(stm32f103c8t6)

目录 一、摘要 二、WS2812B介绍 三、CUBEMX配置 四、程序介绍(KEIL编译器) 五、数据手册 一、摘要 1、本文使用示例单片机型号为stm32f103c8t6,RGB型号为WS2812B; 2、主要实现功能是实现用PWMDMA使RGB_LED亮起不同颜色的灯光…

暖手宝上架亚马逊美国站UL499报告测试标准要求

暖手宝是运用物理及化学原理研制的自动取暖保健用品。该产品以其自动生热,有趣,实用等新颖独特的优势,深受欢迎——暖手宝具有自动取暖,理疗保健等多种功能。只要插上电源等上10分钟左右就能发热,最后一种是通过锂电池…

thinkphp6 只有默认页能访问 其他404 其他模块404

1.只有默认页能访问 其他页404 同时隐藏index.php 在 public/.htaccess 中添加如下配置&#xff0c;后重启服务 <IfModule mod_rewrite.c>Options FollowSymlinks -MultiviewsRewriteEngine OnRewriteCond %{REQUEST_FILENAME} !-dRewriteCond %{REQUEST_FILENAME} !-f…

活跃类指标

活跃类指标反映了用户的真实使用情况。本节我们深入探讨活跃类指标的核心逻辑。 1&#xff0e; UV UV ( Unique Visitor &#xff0c;独立访客&#xff09;&#xff0c;是所有活跃类指标的基础。 既然叫独立访客&#xff0c;何谓之独立&#xff1f; APP 产品界定独立访客相对…

算法的复杂性

通常情况下&#xff0c;一个问题可能对应有多种解决方案&#xff0c;每种解决方案都是一种算法。因此&#xff0c;我们可能经常需要做一件事&#xff1a;从众多算法中挑选出一个最好的算法。所谓“最好”的算法&#xff0c;即最适合当前场景使用的算法。 不同的应用场景&#x…

IT 基础架构管理需要了解的信息

各行各业的现代组织不断面临创新和扩展的压力。就在十多年前&#xff0c;一个组织可以争取时间&#xff0c;在投资新技术时保持保守&#xff0c;同时仍然保持竞争优势&#xff0c;快进到今天&#xff0c;随着商业实践的变化和新技术的不断涌现&#xff0c;商业和技术领域变得更…

瑞利长度(Rayleigh length)

瑞利长度 Rayleigh length 在光学&#xff0c;特别是激光学中&#xff0c;我们设鞍腰部&#xff08;如图中所示的最低处&#xff09;为A&#xff0c;其横截面面积为a&#xff0c;沿光的传播方向&#xff0c;当横截面面积因为散射达到2a时&#xff0c;我们设此处为B&#xff0c;…

Mysql-表的结构操作

1.创建表 CREATE TABLE table_name ( field1 datatype, field2 datatype, field3 datatype ) character set 字符集 collate 校验规则 engine 存储引擎 ; 说明&#xff1a; field 表示列名 datatype 表示列的类型 character set 字符集&#xff0c;如果没有指定字…

从0到0.01入门React | 003.精选 React 面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

天津火爆python培训机构从哪里入手?

Python不仅被应用在职场办公中&#xff0c;还被大型互联网公司应用于大型后端开发&#xff0c;随着大数据领域的高速发展&#xff0c;这门高效的编程语言逐渐成为处理数据的最佳编程语言之一。 Python培训班优势 系统性学习&#xff1a;Python培训班会提供结构化的课程体系&a…

SAP系统供应商预付款请求和预付账款业务

最近搞清帐&#xff01; 在SAP中处理客户或供应商的预收/预付款相关业务流程操作说明, 首先由业务部门(销售或采购)下达销售/采购订单,同时基于订单提交预收/预付申请,客户/供应商款项到账时,由财务部门在SAP中勾选申请单来收付款;最后在财务转应收/应付转发票时自动核销。预付…

Notepad++,搜索窗口独立后,恢复

双击一下find result框&#xff0c;恢复到原来的模式。

腾讯待办停运后怎么办呢?导出的ics文件怎么打开查看

待办类工具在日常工作中的应用是比较广泛的&#xff0c;很多人会选择使用待办软件记录备忘事项&#xff0c;其中一些提醒类的工具是比较广泛使用的。腾讯待办属于一款待办事项和日程管理工具&#xff0c;它通常是以微信小程序的形式&#xff0c;为大家提供时间管理规划&#xf…

做一个Springboot文章分类模块

目录 文章分类 1、新增文章分类 前言 代码编写 测试 2、 文章分类列表 前言 代码编写 测试 3、获取文章列表详情 前言 代码实现 测试 4、更新文章分类 前言 代码实现 测试 5、删除文章分类 前言 代码实现 测试 分页查询 文章列表条件分页 前言 代码编…