CoRL 2023 获奖论文公布,manipulation、强化学习等主题成热门

news2024/11/25 5:58:04

今年大模型及具身智能领域有了非常多的突破性进展,作为机器人学与机器学习交叉领域的全球顶级学术会议之一,CoRL也得到了更多的关注。

CoRL 是面向机器人学习的顶会,涵盖机器人学、机器学习和控制等多个主题,包括理论与应用。今年的CoRL 2023共有199 篇论文入选,热门主题包括控制、强化学习等。大会已经于上周11 月 6 日- 9 日在美国亚特兰大举行,在本次大会上,公布了最佳论文奖、最佳学生论文奖、最佳系统论文奖等奖项。

下面我们一起起来看看CoRL 2023的获奖论文详情:

PS:除了今年的获奖论文,我也整理了去年CoRL 2022的获奖论文,有想法发顶会的同学建议都看看哦。

需要的全部论文及源码同学看文末

CoRL 2023

最佳论文奖

Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation

标题:蒸馏特征场实现少样本语言引导操作

作者:William Shen, Ge Yang, Alan Yu, Jensen Wong, Leslie Pack Kaelbling, Phillip Isola

内容:本研究通过利用蒸馏特征场,将准确的3D几何与2D基础模型中的丰富语义相结合,填补了机器人操作中2D到3D的空白。作者提出了一种用于6自由度抓取和放置的少样本学习方法,利用这些强大的空间和语义先验知识实现对未见过物体的野外泛化。通过从视觉语言模型CLIP中提取的特征,作者展示了一种通过自由文本自然语言指定新对象进行操作的方法,并证明了其能够泛化到未见过的表达和新类别的物体上。

最佳学生论文奖

Robots That Ask For Help: Uncertainty Alignment for Large Language Model Planners

标题:大型语言模型规划器的不确定性对齐

作者:Allen Z. Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah Brown, Peng Xu, Leila Takayama, Fei Xia, Jake Varley, Zhenjia Xu, Dorsa Sadigh, Andy Zeng, Anirudha Majumdar

内容:本研究提出了一种名为KNOWNO的框架,用于测量和对齐基于大型语言模型(LLM)的规划器的不确定性。该框架可以帮助规划器在不知道时知道并请求帮助。KNOWNO建立在共形预测理论的基础上,提供任务完成的统计保证,同时最小化复杂多步规划设置中需要人类帮助的情况。实验结果表明,在涉及不同模态的模糊性的任务中,KNOWNO在提高效率和自主性方面优于现代基线方法(可能涉及集成或广泛的提示调整),并提供正式保证。

Predicting Object Interactions with Behavior Primitives: An Application in Stowing Tasks

标题:使用行为原语预测物体交互

作者:Haonan Chen, Yilong Niu, Kaiwen Hong, Shuijing Liu, Yixuan Wang, Yunzhu Li, Katherine Rose Driggs-Campbell

内容:本研究提出了一种使用行为原语从预测物体交互的预测模型和单个演示中学习泛化机器人装载策略的方法。作者提出了一种新的框架,利用图神经网络在行为原语参数空间内预测物体交互。进一步地,作者使用增强的原语轨迹优化来搜索预定义的异构行为原语库的参数以实例化控制动作。该框架使机器人能够通过几个关键帧(3-4)从单个演示中熟练地执行长期装载任务。

Language Embedded Radiance Fields for Zero-Shot Task-Oriented Grasping

标题:用于零样本面向任务抓取的语言嵌入辐射场

作者:Satvik Sharma, Adam Rashid, Chung Min Kim, Justin Kerr, Lawrence Yunliang Chen, Angjoo Kanazawa, Ken Goldberg

内容:本研究提出了一种新的语言嵌入辐射场用于面向任务的物体抓取的方法LERF-TOGO。该方法使用视觉语言模型,在给定自然语言查询的情况下,零样本输出一个物体的抓取分布。为了实现这一点,作者首先构建了一个场景的LERF,将CLIP嵌入到多尺度3D语言字段中,可使用文本进行查询。然而,LERF没有物体边界的感觉,因此其相关性输出通常返回对象上的不完整激活,这对于抓取是不够的。LERF-TOGO通过提取DINO特征的3D物体掩码来弥补这种缺乏空间分组的问题,然后在此掩码上条件性地查询LERF以获得物体上的一个语义分布,从而从现成的抓取规划器中对抓取进行排序。

最佳系统论文奖

RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools

标题:使用多种工具进行长期弹性-塑性物体操纵

作者:Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, Jiajun Wu

内容:本研究开发了一种名为RoboCook的智能机器人系统,能够感知、建模和操纵各种工具的弹塑性物体。RoboCook使用点云场景表示法,利用图神经网络(GNN)对工具-物体交互进行建模,并将工具分类与自监督策略学习相结合,制定操纵计划。作者展示了一个通用的机器人手臂可以从每个工具仅需20分钟的实际交互数据中学习复杂的长期软体物体操纵任务,如制作饺子和字母饼干。

MimicPlay: Long-Horizon Imitation Learning by Watching Human Play

标题:通过观察人类玩耍进行长期模仿学习

作者:Chen Wang, Linxi Fan, Jiankai Sun, Ruohan Zhang, Li Fei-Fei, Danfei Xu, Yuke Zhu, Anima Anandkumar

内容:本研究提出了一种分层学习框架MimicPlay,通过观察人类玩耍的视频序列来学习机器人的长期模仿技能。作者认为,即使形态不同,人类玩耍数据仍然包含丰富的物理交互信息,可以促进机器人策略学习。受此启发,MimicPlay从人类玩耍数据中学习潜在计划,以指导在少量远程操作演示上训练的低层次视觉运动控制。通过对14个现实世界中的长期操纵任务进行系统评估,作者发现MimicPlay在任务成功率、泛化能力和对干扰的鲁棒性方面优于最先进的模仿学习方法。

Robot Parkour Learning

标题:机器人跑酷学习

作者:Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher G Atkeson, Sören Schwertfeger, Chelsea Finn, Hang Zhao

内容:本研究提出了一种用于学习多样化跑酷技能的端到端视觉跑酷策略的系统,该系统使用简单的奖励,而无需任何参考运动数据。作者开发了一种受直接定位启发的强化学习方法来生成跑酷技能,包括攀爬高障碍物、跃过大间隙、爬行低障碍物、挤过窄缝和奔跑等。作者将这些技能提炼为单一的视觉跑酷策略,并使用其自我中心的深度相机将其转移到四足机器人上。

CoRL 2022

最佳论文奖

Training Robots to Evaluate Robots: Example-Based Interactive Reward Functions for Policy Learning

用于策略学习的基于示例的交互式奖励函数

简述:本研究提出了一种名为“交互式奖励函数”(IRFs)的方法,用于训练机器人自动获取物理互动行为,以评估尝试执行的机器人技能的结果,从而提高任务执行的性能。

最佳论文入围名单

Learning Agile Skills via Adversarial Imitation of Rough Partial Demonstrations

通过对手的粗略部分演示进行对抗性模仿来学习敏捷技能

简述:本研究提出了一种生成对抗网络方法,用于从部分和可能物理不兼容的演示中推断奖励函数,以成功获取技能。

Supercharging Imitation with Regularized Optimal Transport

用正则化最优传输加强模仿

简述:本研究提出了一种新的模仿学习算法——正则化最优传输(ROT),该算法结合了轨迹匹配奖励和行为克隆,可以显著加速模仿学习,并在多个视觉控制任务上表现出色。

最佳系统论文奖

Legged Locomotion in Challenging Terrains using Egocentric Vision

基于自我中心视觉的挑战性地形中的腿部运动

简述:本研究提出了一种全新的端到端移动系统,能够跨越多种地形,并在小型四足机器人上实现实时运行。该系统使用单个前置深度相机进行自我中心视觉,并通过强化学习和有监督学习训练了策略。

特别创新奖

Do As I Can, Not As I Say: Grounding Language in Robotic Affordances

基于机器人可供性的语言

简述:本研究提出了一种通过预训练技能提供真实世界基础的方法,以约束语言模型提出既可行又适合上下文的自然语言行动。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“CoRL”领取获奖论文+代码合集

码字不易,欢迎大家点赞评论收藏!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1202703.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CCF ChinaSoft 2023 论坛巡礼 | 生成式AI与软件自动化论坛

2023年CCF中国软件大会(CCF ChinaSoft 2023)由CCF主办,CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办,将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…

说说react中引入css的方式有哪几种?区别?

一、是什么 组件式开发选择合适的css解决方案尤为重要 通常会遵循以下规则: 可以编写局部css,不会随意污染其他组件内的原生;可以编写动态的css,可以获取当前组件的一些状态,根据状态的变化生成不同的css样式;支持所有的css特性:伪类、动画、媒体查询等;编写起来简洁…

牛客网:OR36 链表的回文结构

一、题目 函数原型: bool chkPalindrome(ListNode* A) 二、思路 判断一个单链表是否为回文结构,由于单链表不能倒序遍历,所以需要找到单链表的后半段,并将其逆置,再与前半段链表进行比较。 如何找到单链表的后半段呢&a…

3D造型渲染软件DAZ Studio mac中文版介绍

DAZ Studio mac是一款3D造型和渲染软件,由 Daz 3D 公司开发。它允许用户创建、编辑、动画化并渲染精美的数字图像与动画。DAZ Studio 还提供了一个虚拟的3D艺术家工作室环境,让用户可以轻松地设置场景、布置角色和应用材质。 用户可以通过 DAZ Studio 中…

麒麟KYLINOS中使用Ghost镜像文件还原系统

原文链接:麒麟KYLINOS中使用Ghost镜像文件还原系统 hello,大家好啊,今天给大家带来麒麟KYLINOS备份还原的第三篇文章,使用Ghost镜像文件还原系统,将之前做好的Ghost镜像文件拷贝到u盘里,然后在另一台终端上…

如何在群晖虚拟机快速部署线上web网站并实现公网访问

文章目录 前言1. 安装网页运行环境1.1 安装php1.2 安装webstation 2. 下载网页源码文件2.1 访问网站地址并下载压缩包2.2 解压并上传至群辉NAS 3. 配置webstation3.1 配置网页服务3.2 配置网络门户 4. 局域网访问静态网页配置成功5. 使用cpolar发布静态网页,实现公网…

2023年【汽车驾驶员(高级)】证考试及汽车驾驶员(高级)实操考试视频

题库来源:安全生产模拟考试一点通公众号小程序 汽车驾驶员(高级)证考试考前必练!安全生产模拟考试一点通每个月更新汽车驾驶员(高级)实操考试视频题目及答案!多做几遍,其实通过汽车…

ASAM OpenDRIVE V1.7协议超详解(一)

文章目录 前言一、仿真场景的构成二、openDRIVE框架三、g_additionalData四、openDRIVE-header五、openDRIVE-road1、Road总拓扑结构2、Road-link介绍1)link的拓扑结构2)link链接示例3)link前继后继4)道路link规则 3、road-type介…

从0到0.01入门React | 005.精选 React 面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

理事长走进统信软件,深度探讨社区发展规划 | 理事长走进系列

10 月 19 日,龙蜥社区“理事长走进理事单位系列交流会”活动第二期开展,本期走进龙蜥社区副理事长单位——统信软件,会议共出席 17 人。会上回顾了统信软件过去在龙蜥社区的贡献和投入,并共同对未来的合作计划和诉求进行了深度讨论…

cpcd 使用

cpcd 是支持多协议融合的一种解决方案,应用场景是一个无线模块支持大于一种协议栈,通过cpcd 可以分发不同协议,使用说明主要查看readme.md 文件说明 编译 使用cpcd 4.3.2 提示需要安装mbedtls 编译成功了 运行 关闭加密,通信…

普通线性回归和评估指标代码实战

我们用加州房价预测来讲述普通线性回归的算法实战和预测指标。在这里省去数据预处理和特征工程的步骤。首先导入相应的模块: from sklearn.linear_model import LinearRegression as LR from sklearn.model_selection import train_test_split from sklearn.model_…

基于若依的ruoyi-nbcio流程管理系统增加读取节点扩展属性的方法

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 我们的在流程设计器里会根据需要再不同的节点增加扩展属性,如何动态读取这些扩展属性&#xff…

机器人仿真GAZEBO开源代码分享

1、https://github.com/PRBonn/agribot 2、https://github.com/ros-mobile-robots/diffbot

OpenHarmony worker详解

一,定义 worker是与主线程并行的独立线程。创建Worker的线程被称为宿主线程,Worker工作的线程被称为Worker线程。创建Worker时传入的脚本文件在Worker线程中执行,通常在Worker线程中处理耗时的操作,需要注意的是,Work…

【开源项目】snakeflow流程引擎研究

项目地址 https://gitee.com/yuqs/snakerflow https://toscode.mulanos.cn/zc-libre/snakerflow-spring-boot-stater (推荐) https://github.com/snakerflow-starter/snakerflow-spring-boot-starter 常用API 部署流程 processId engine.process().de…

仓库管理系统(WMS)升级解决方案—条码引入

在企业的整个供应链中,仓储起着至关重要的作用,如果不能保证正确的进货和库存控制及发货,将会导致管理费用的增加,服务质量难以得到保证,从而影响企业的竞争力。 传统简单、静态的仓库管理通常以结果为导向&#xff0…

windows aseprite编译指南(白嫖)

aseprite是画像素图的专业软件,steam上有售卖,不过官方也在github开源了,需要自己编译。 1. 首先获取源码 直接在github上clone源码到本地指定目录 git.bash中执行(需要腾一个用来安放源码的路径): git…

react脚手架create-react-app创建react项目

1.全局安装 create-react-app winR/桌面目录下cmd进入终端页面 npm i -g create-react-app2.create-react app 初始化项目 create-react-app 项目名称项目初始化完成 运行项目 目录下cmd控制台输入 npm start然后打开本地服务运行项目查看

RE切入点:选择SLI,设定SLO

还是先来复习下上节课讲的“系统可用性”的两种计算方式,一种是从故障角度出发,以时长维度对系统进行稳定性评估;另一种是从成功请求占比角度出发,以请求维度对系统进行稳定性评估。同时,我们还讲到,在 SRE…