eocc1_Findings_candlestick_ohlc_volume_

news2024/12/24 9:41:40

An Unusually Tall Candle Often Has a Minor High or Minor Low Occurring within One Day of It异常高的蜡烛通常会在一天内出现小幅高点或小幅低点

     I looked at tens of thousands of candles to prove this, and the study details are on my web site, ThePatternSite.com.

     Figure 1.1 shows examples of unusually tall candles highlighted by up arrows. A minor high or low occurs within a day of each of them (before or after) except for A and B 除了 A 和 B 之外,每个信号的一天内(之前或之后)都会出现小幅高点或低点. Out of 11 signals in this figure, the method got 9 of them right, a success rate of 82% (which is unusually good).

import yfinance as yf

stock_symbol='MLKN'
df = yf.download( stock_symbol, start='2006-12-15', end='2007-04-01')
df

 

from matplotlib.dates import date2num
import pandas as pd

df.reset_index(inplace=True)
df['Datetime'] = date2num( pd.to_datetime( df["Date"], # pd.Series: Name: Date, Length: 750, dtype: object
                                           format="%Y-%m-%d"
                                         ).tolist()
                                # [Timestamp('2017-01-03 00:00:00'),...,Timestamp('2017-06-30 00:00:00')]
                         )# Convert datetime objects to Matplotlib dates.

df.head()

df_candlestick_data = df.loc[:, ["Datetime",
                                 "Open",
                                 "High",
                                 "Low",
                                 "Close",
                                 "Volume"
                                ]
                            ]

df_candlestick_data

!pip install mpl-finance

https://github.com/matplotlib/mplfinance/blob/master/src/mplfinance/plotting.py 

from mpl_finance import candlestick_ohlc
from matplotlib.dates import date2num, WeekdayLocator, DayLocator, DateFormatter, MONDAY
import matplotlib.pyplot as plt
import numpy as np
import datetime
from matplotlib.dates import num2date

# Create a new Matplotlib figure
fig, ax = plt.subplots( figsize=(10,6) )

xdays=[]
# convert the (number of datetime) to a (date string)
for index in df_candlestick_data.index.values: # [13497.0, 13500., ...,13500.][index]
    xdays.append( datetime.date.isoformat(num2date( df_candlestick_data['Datetime'][index]
                                                  )# datetime.datetime(2006, 12, 15, 0, 0, tzinfo=datetime.timezone.utc)
                                         )
                ) # ['2006-12-15', '2006-12-18', ...,'2007-03-30']

# creation of new data by replacing the time array with equally spaced values.
# this will allow to remove the gap between the days, when plotting the data
data2 = np.hstack([ df_candlestick_data.index.values[:, np.newaxis], df_candlestick_data.values[:,1:]
                    #[[0], ...], [[35.77999878, 35.95999908, 35.36000061, 35.40000153], ...]
                  ])#[[1], ...], [[35.40999985, 35.63000107, 34.43000031, 34.49000168], ...]
# array([[ 0.        , 35.77999878, 35.95999908, 35.36000061, 35.40000153],
#        [ 1.        , 35.40999985, 35.63000107, 34.43000031, 34.49000168],
#        ...
#        [70.        , 33.50999832, 33.88999939, 33.25      , 33.49000168]
#        ])

# Prepare a candlestick plot
# 1
# candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0)
# quotes : sequence of (time, open, high, low, close, ...) sequences
#          As long as the first 5 elements are these values,
# time : we use an (integer index list) to replace the (Datetime list) #########
ls, rs=candlestick_ohlc( ax, data2, # data
                         width=0.6,# fraction of a day for the rectangle width
                         colorup='yellow', colordown='r',
                         alpha=1.
                       )
# returns (lines, patches) where
#        lines is a list of lines added and
#        patches is a list of the rectangle patches added

# https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
for line in ls:
  line.set_c('k')
  line.set_linewidth(1.)
  line.set_zorder(5)

for r in rs:
    r.set_edgecolor('k')
    r.set_linewidth(1)
    #r.set_zorder(1)
    r.set_alpha(1)
    #r.set_facecolor('w')

# 2
# set the ticks of the x axis with an (integer index list)
ax.set_xticks( np.arange( len(df_candlestick_data) ) )
# 3
# set the xticklabels with a (date string) list
ax.set_xticklabels(xdays, rotation=45, horizontalalignment='right')

# Set Date Format
# ax.xaxis.set_major_formatter( DateFormatter('%Y-%m-%d') )
# ax.xaxis.set_minor_locator( DayLocator() ) # minor ticks on the days
ax.xaxis.set_major_locator( WeekdayLocator(MONDAY) ) # major ticks on the mondays
ax.xaxis_date() # treat the x data as dates

#justify
ax.autoscale(enable=True, axis='x', tight=True)
# rotate all ticks to 45
plt.setp( ax.get_xticklabels(), rotation=45, horizontalalignment='right' )

plt.tight_layout()# Prevent x axes label from being cropped
plt.show()


 

 2 two subplots with volume

from mpl_finance import candlestick_ohlc
from matplotlib.dates import date2num, WeekdayLocator, DayLocator, DateFormatter, MONDAY
import matplotlib.pyplot as plt
import numpy as np
import datetime
from matplotlib.dates import num2date
import numpy as np

# Create a new Matplotlib figure
fig, axes = plt.subplots( 2, 1, figsize=(10,6), 
                          sharex=True,
                          gridspec_kw={'height_ratios': [3,1]},
                          )
fig.subplots_adjust(hspace=0.)

xdays=[]
# convert the (number of datetime) to a (date string)
for index in df_candlestick_data.index.values: # [13497.0, 13500., ...,13500.][index]
    xdays.append( datetime.date.isoformat(num2date( df_candlestick_data['Datetime'][index]
                                                  )# datetime.datetime(2006, 12, 15, 0, 0, tzinfo=datetime.timezone.utc)
                                         )
                ) # ['2006-12-15', '2006-12-18', ...,'2007-03-30']

# creation of new data by replacing the time array with equally spaced values.
# this will allow to remove the gap between the days, when plotting the data
data2 = np.hstack([ df_candlestick_data.index.values[:, np.newaxis], df_candlestick_data.values[:,1:]
                    #[[0], ...], [[35.77999878, 35.95999908, 35.36000061, 35.40000153], ...]
                  ])#[[1], ...], [[35.40999985, 35.63000107, 34.43000031, 34.49000168], ...]
# array([[ 0.        , 35.77999878, 35.95999908, 35.36000061, 35.40000153],
#        [ 1.        , 35.40999985, 35.63000107, 34.43000031, 34.49000168],
#        ...
#        [70.        , 33.50999832, 33.88999939, 33.25      , 33.49000168]
#        ])

# Prepare a candlestick plot
# 1
# candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0)
# quotes : sequence of (time, open, high, low, close, ...) sequences
#          As long as the first 5 elements are these values,
# time : we use an (integer index list) to replace the (Datetime list) #########
ls, rs=candlestick_ohlc( axes[0], data2, # data
                         width=0.6,# fraction of a day for the rectangle width
                         colorup='yellow', colordown='r',
                         alpha=1.
                       )
# returns (lines, patches) where
#        lines is a list of lines added and
#        patches is a list of the rectangle patches added

# https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
for line in ls:
  line.set_c('k')
  line.set_linewidth(1.)
  line.set_zorder(5)

for r in rs:
    r.set_edgecolor('k')
    r.set_linewidth(1)
    #r.set_zorder(1)
    r.set_alpha(1)
    #r.set_facecolor('w')

#axes[0].set_xticks([]) # remove xticks
axes[0].spines['bottom'].set_visible=False

# Create a new column in dataframe and populate with bar color
i = 0
while i < len(df):
    if df_candlestick_data.iloc[i]['Close'] > df_candlestick_data.iloc[i]['Open']:
        df_candlestick_data.at[i, 'color'] = "yellow"
    elif df_candlestick_data.iloc[i]['Close'] < df_candlestick_data.iloc[i]['Open']:
        df_candlestick_data.at[i, 'color'] = "red"
    else:
        df_candlestick_data.at[i, 'color'] = "black"
    i += 1
# 2
# set the ticks of the x axis with an (integer index list)
# axes[1].set_xticks( np.arange( len(df_candlestick_data) ) )    
axes[1].bar( np.arange( len(df_candlestick_data) ), 
             df_candlestick_data['Volume'].values,
             color=df_candlestick_data['color'].values,
             edgecolor=['black']*len(df_candlestick_data),
             width=0.6,
            )

# 3
# set the xticklabels with a (date string) list
axes[1].set_xticklabels(xdays, rotation=45, horizontalalignment='right')

# Set Date Format
# ax.xaxis.set_major_formatter( DateFormatter('%Y-%m-%d') )
# ax.xaxis.set_minor_locator( DayLocator() ) # minor ticks on the days
axes[1].xaxis.set_major_locator( WeekdayLocator(MONDAY) ) # major ticks on the mondays
axes[1].xaxis_date() # treat the x data as dates

#justify
axes[1].autoscale(enable=True, axis='x', tight=True)
# rotate all ticks to 45
plt.setp( axes[1].get_xticklabels(), rotation=45, horizontalalignment='right' )


#axes[1].set_yticks([]) # remove yticks
axes[1].spines['top'].set_visible=False
#axes[0].set_xticks([]) # remove xticks


plt.tight_layout()# Prevent x axes label from being cropped
plt.show()


1 one subplot with volume

from mpl_finance import candlestick_ohlc
from matplotlib.dates import date2num, WeekdayLocator, DayLocator, DateFormatter, MONDAY
import matplotlib.pyplot as plt
import numpy as np
import datetime
from matplotlib.dates import num2date
import numpy as np

# Create a new Matplotlib figure
fig, ax = plt.subplots( figsize=(10,6) )

xdays=[]
# convert the (number of datetime) to a (date string)
for index in df_candlestick_data.index.values: # [13497.0, 13500., ...,13500.][index]
    xdays.append( datetime.date.isoformat(num2date( df_candlestick_data['Datetime'][index]
                                                  )# datetime.datetime(2006, 12, 15, 0, 0, tzinfo=datetime.timezone.utc)
                                         )
                ) # ['2006-12-15', '2006-12-18', ...,'2007-03-30']

# creation of new data by replacing the time array with equally spaced values.
# this will allow to remove the gap between the days, when plotting the data
data2 = np.hstack([ df_candlestick_data.index.values[:, np.newaxis], df_candlestick_data.values[:,1:]
                    #[[0], ...], [[35.77999878, 35.95999908, 35.36000061, 35.40000153], ...]
                  ])#[[1], ...], [[35.40999985, 35.63000107, 34.43000031, 34.49000168], ...]
# array([[ 0.        , 35.77999878, 35.95999908, 35.36000061, 35.40000153],
#        [ 1.        , 35.40999985, 35.63000107, 34.43000031, 34.49000168],
#        ...
#        [70.        , 33.50999832, 33.88999939, 33.25      , 33.49000168]
#        ])

# Prepare a candlestick plot
# 1
# candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0)
# quotes : sequence of (time, open, high, low, close, ...) sequences
#          As long as the first 5 elements are these values,
# time : we use an (integer index list) to replace the (Datetime list) #########
ls, rs=candlestick_ohlc( ax, data2, # data
                         width=0.6,# fraction of a day for the rectangle width
                         colorup='yellow', colordown='r',
                         alpha=1.
                       )
# returns (lines, patches) where
#        lines is a list of lines added and
#        patches is a list of the rectangle patches added

# https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
for line in ls:
  line.set_c('k')
  line.set_linewidth(1.)
  line.set_zorder(5)

for r in rs:
    r.set_edgecolor('k')
    r.set_linewidth(1)
    #r.set_zorder(1)
    r.set_alpha(1)
    #r.set_facecolor('w')

# 2
# set the ticks of the x axis with an (integer index list)
ax.set_xticks( np.arange( len(df_candlestick_data) ) )
# 3
# set the xticklabels with a (date string) list
ax.set_xticklabels(xdays, rotation=45, horizontalalignment='right')

# Set Date Format
# ax.xaxis.set_major_formatter( DateFormatter('%Y-%m-%d') )
# ax.xaxis.set_minor_locator( DayLocator() ) # minor ticks on the days
ax.xaxis.set_major_locator( WeekdayLocator(MONDAY) ) # major ticks on the mondays
ax.xaxis_date() # treat the x data as dates

#justify
ax.autoscale(enable=True, axis='x', tight=True)
# rotate all ticks to 45
plt.setp( ax.get_xticklabels(), rotation=45, horizontalalignment='right' )

ax2 = ax.twinx()  

ax2.bar( np.arange( len(df_candlestick_data) ), 
        df_candlestick_data['Volume'].values,
        color=df_candlestick_data['color'].values,
        edgecolor=['black']*len(df_candlestick_data),
        width=0.6
      )

max_price=np.max(df_candlestick_data[['Open','Close', 'High', 'Low']].values )#40.79
min_price=np.min(df_candlestick_data[['Open','Close', 'High', 'Low']].values )#32.85

min_price_tick = np.floor(min_price) # 32.0
max_price_tick = np.ceil(max_price)  # 41.0
num_y_ticks=10

#spacing=(max_price_tick-min_price_tick)/5
spacing=(max_price_tick-min_price_tick)/num_y_ticks # 0.9
min_price_tick= np.floor(min_price_tick-spacing) # 31.0

min_volume=df_candlestick_data['Volume'].min() # 222 400
max_volume=df_candlestick_data['Volume'].max() # 3 638 400

min_floor_volume=np.floor( np.log10( min_volume + 1e-10 ) )#5.0 : 222 400 ==> 5.34713478291002 ==> 5
max_ceil_volume=np.ceil( np.log10( max_volume + 1e-10 ) ) # 7.0 : 3 638 400 ==> 6.560910443007641 ==> 6

#min_volume_base = np.floor( min_volume/( 10**(min_floor_volume) ) ) # 5
min_volume_tick = 1*10**min_floor_volume # 100 000#min_volume_base * 

#max_volume_base= np.ceil( max_volume/( 10**(max_ceil_volume-1) ) ) # 6
max_volume_tick = 3.0 * 10**(max_ceil_volume) # 30 000 000
ax.set_ylim(min_price_tick, max_price_tick )
ax2.set_ylim(min_volume_tick, max_volume_tick )

plt.tight_layout()# Prevent x axes label from being cropped
plt.show()

from mpl_finance import candlestick_ohlc
from matplotlib.dates import date2num, WeekdayLocator, DayLocator, DateFormatter, MONDAY
import matplotlib.pyplot as plt
import numpy as np
import datetime
from matplotlib.dates import num2date
import numpy as np

# Create a new Matplotlib figure
fig, ax = plt.subplots( figsize=(10,6) )

xdays=[]
# convert the (number of datetime) to a (date string)
for index in df_candlestick_data.index.values: # [13497.0, 13500., ...,13500.][index]
    xdays.append( datetime.date.isoformat(num2date( df_candlestick_data['Datetime'][index]
                                                  )# datetime.datetime(2006, 12, 15, 0, 0, tzinfo=datetime.timezone.utc)
                                         )
                ) # ['2006-12-15', '2006-12-18', ...,'2007-03-30']

# creation of new data by replacing the time array with equally spaced values.
# this will allow to remove the gap between the days, when plotting the data
data2 = np.hstack([ df_candlestick_data.index.values[:, np.newaxis], df_candlestick_data.values[:,1:]
                    #[[0], ...], [[35.77999878, 35.95999908, 35.36000061, 35.40000153], ...]
                  ])#[[1], ...], [[35.40999985, 35.63000107, 34.43000031, 34.49000168], ...]
# array([[ 0.        , 35.77999878, 35.95999908, 35.36000061, 35.40000153],
#        [ 1.        , 35.40999985, 35.63000107, 34.43000031, 34.49000168],
#        ...
#        [70.        , 33.50999832, 33.88999939, 33.25      , 33.49000168]
#        ])

# Prepare a candlestick plot
# 1
# candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0)
# quotes : sequence of (time, open, high, low, close, ...) sequences
#          As long as the first 5 elements are these values,
# time : we use an (integer index list) to replace the (Datetime list) #########
ls, rs=candlestick_ohlc( ax, data2, # data
                         width=0.6,# fraction of a day for the rectangle width
                         colorup='yellow', colordown='r',
                         alpha=1.
                       )
# returns (lines, patches) where
#        lines is a list of lines added and
#        patches is a list of the rectangle patches added

# https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
for line in ls:
  line.set_c('k')
  line.set_linewidth(1.)
  line.set_zorder(5)

for r in rs:
    r.set_edgecolor('k')
    r.set_linewidth(1)
    #r.set_zorder(1)
    r.set_alpha(1)
    #r.set_facecolor('w')

# 2
# set the ticks of the x axis with an (integer index list)
ax.set_xticks( np.arange( len(df_candlestick_data) ) )
# 3
# set the xticklabels with a (date string) list
ax.set_xticklabels(xdays, rotation=45, horizontalalignment='right')

# Set Date Format
# ax.xaxis.set_major_formatter( DateFormatter('%Y-%m-%d') )
# ax.xaxis.set_minor_locator( DayLocator() ) # minor ticks on the days
ax.xaxis.set_major_locator( WeekdayLocator(MONDAY) ) # major ticks on the mondays
ax.xaxis_date() # treat the x data as dates

#justify
ax.autoscale(enable=True, axis='x', tight=True)
# rotate all ticks to 45
plt.setp( ax.get_xticklabels(), rotation=45, horizontalalignment='right' )

ax2 = ax.twinx()  

ax2.bar( np.arange( len(df_candlestick_data) ), 
        df_candlestick_data['Volume'].values,
        color=df_candlestick_data['color'].values,
        edgecolor=['black']*len(df_candlestick_data),
        width=0.6
      )

max_price=np.max(df_candlestick_data[['Open','Close', 'High', 'Low']].values )#40.79
min_price=np.min(df_candlestick_data[['Open','Close', 'High', 'Low']].values )#32.85

min_price_tick = np.floor(min_price) # 32.0
max_price_tick = np.ceil(max_price)  # 41.0
num_y_ticks=10

#spacing=(max_price_tick-min_price_tick)/5
spacing=(max_price_tick-min_price_tick)/num_y_ticks # 0.9
min_price_tick= np.floor(min_price_tick-spacing) # 31.0

min_volume=df_candlestick_data['Volume'].min() # 222 400
max_volume=df_candlestick_data['Volume'].max() # 3 638 400

min_floor_volume=np.floor( np.log10( min_volume + 1e-10 ) )#5.0 : 222 400 ==> 5.34713478291002 ==> 5
max_ceil_volume=np.ceil( np.log10( max_volume + 1e-10 ) ) # 7.0 : 3 638 400 ==> 6.560910443007641 ==> 6

#min_volume_base = np.floor( min_volume/( 10**(min_floor_volume) ) ) # 5
min_volume_tick = 1*10**min_floor_volume # 100 000#min_volume_base * 

#max_volume_base= np.ceil( max_volume/( 10**(max_ceil_volume-1) ) ) # 6
max_volume_tick = 3.0 * 10**(max_ceil_volume) # 30 000 000
ax.set_ylim(min_price_tick, max_price_tick )
ax2.set_ylim(min_volume_tick, max_volume_tick )
ax2.set_yticks([])

ax.set_title(stock_symbol)

plt.tight_layout()# Prevent x axes label from being cropped
plt.show()

     Figure 1.1 shows examples of unusually tall candles highlighted by up arrows. A minor high or low occurs within a day of each of them (before or after) except for A and B   除了 A 和 B 之外,每个信号的一天内(之前或之后)都会出现小幅高点或低点. Out of 11 signals in this figure, the method got 9 of them right, a success rate of 82% (which is unusually good). 

Figure 1.1 The up arrows highlight candles taller than average向上箭头突出显示高于平均水平的蜡烛. A minor high or minor low occurs within plus or minus one day of most of the tall candles大多数高蜡烛的正负一天内会出现小幅高点或小幅低点.

Follow these steps to use the results.

  • 1. The tall candle must be
    • above the highs of two and three days ago (for uptrends) or 
    • below the lows of two and three days ago (for down-trends).
  • 2. Find the average high-low height of the prior 22 trading days (a calendar month), not including the current candle.
  • 3. Multiply the average height by 146%. If the current candle height is above the result, then you have an unusually tall candle.

Expect a peak within a day from unusually tall candles 67% of the time during an uptrend and a valley within a day 72% of the time in a downtrend. Additional peaks or valleys can occur after that, so the minor high or low need not be wide or lasting. However, if you have a desire to buy a stock after a tall candle, consider waiting. The chances are that price will reverse and you should be able to buy at a better price如果您想在高蜡烛之后购买股票,请考虑等待。 价格很可能会反转,您应该能够以更好的价格购买. 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1199720.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

软件工程——名词解释

适用多种类型的软件工程教材&#xff0c;有关名词释义的总结较为齐全~ 目录 1. 软件 2. 软件危机 3. 软件工程 4. 软件生存周期 5. 软件复用 6. 质量 7. 质量策划 8. 质量改进 9. 质量控制 10. 质量保证 11. 软件质量 12. 正式技术复审 13. ISO 14. ISO9000 15.…

SpringBoot系列-2 自动装配

背景&#xff1a; Spring提供了IOC机制&#xff0c;基于此我们可以通过XML或者注解配置&#xff0c;将三方件注册到IOC中。问题是每个三方件都需要经过手动导入依赖、配置属性、注册IOC&#xff0c;比较繁琐。 基于"约定优于配置"原则的自动装配机制为该问题提供了一…

macOS使用conda初体会

最近在扫盲测序的一些知识 其中需要安装一些软件进行练习&#xff0c;如质控的fastqc&#xff0c;然后需要用conda来配置环境变量和安装软件。记录一下方便后续查阅学习 1.安装miniconda 由于我的电脑之前已经安装了brew&#xff0c;所以我就直接用brew安装了 brew install …

【yolov5】onnx的INT8量化engine

GitHub上有大佬写好代码&#xff0c;理论上直接克隆仓库里下来使用 git clone https://github.com/Wulingtian/yolov5_tensorrt_int8_tools.git 然后在yolov5_tensorrt_int8_tools的convert_trt_quant.py 修改如下参数 BATCH_SIZE 模型量化一次输入多少张图片 BATCH 模型量化…

Technology Strategy Patterns 学习笔记8- Communicating the Strategy-Decks(ppt模板)

1 Ghost Deck/Blank Deck 1.1 It’s a special way of making an initial deck that has a certain purpose 1.2 you’re making sure you have figured out what all the important shots are before incurring the major expense of shooting them 1.3 需要从技术、战略、产…

2023 年最新企业微信官方会话机器人开发详细教程(更新中)

目标是开发一个简易机器人&#xff0c;能接收消息并作出回复。 获取企业 ID 企业信息页面链接地址&#xff1a;https://work.weixin.qq.com/wework_admin/frame#profile 自建企业微信机器人 配置机器人应用详情 功能配置 接收消息服务器配置 配置消息服务器配置 配置环境变量…

[01]汇川IMC30G-E系列运动控制卡应用笔记

简介 IMC30G-E系列产品是汇川技术自主研制的高性能EtherCAT网络型运动控制器&#xff08;卡&#xff09;&#xff0c;同时兼容脉冲轴的控制&#xff1b;IMC30G-E支持点位/JOG、插补、多轴同步、高速位置比较输出、PWM等全面的运动控制功能&#xff0c;具备高同步控制精度。 开发…

OpenWRT浅尝 / 基于RAVPower-WD009便携路由文件宝的旁路网关配置

目录 前言需求分析手头的设备家庭网络拓扑图旁路网关配置OpenWRT固件选择OpenWRT固件刷入旁路网关配置流程 旁路网关的使用前置工作日常存储/关键备份内网穿透24小时待命下载器 前言 近期由于个人需求&#xff0c;需要一台OpenWRT设备实现一些功能。所以本文主要还是为了自己后…

k8s-实验部署 1

1、k8s集群部署 更改所有主机名称和解析 开启四台实验主机&#xff0c;k8s1 仓库&#xff1b;k8s2 集群控制节点&#xff1b; k8s3 和k8s4集群工作节点&#xff1b; 集群环境初始化 使用k8s1作为仓库&#xff0c;将所有的镜像都保存在本地&#xff0c;不要将集群从外部走 仓库…

金和OA jc6 任意文件上传漏洞复现

0x01 产品简介 金和OA协同办公管理系统软件&#xff08;简称金和OA&#xff09;&#xff0c;本着简单、适用、高效的原则&#xff0c;贴合企事业单位的实际需求&#xff0c;实行通用化、标准化、智能化、人性化的产品设计&#xff0c;充分体现企事业单位规范管理、提高办公效率…

学习率范围测试(LR Finder)脚本

简介 深度学习中的学习率是模型训练中至关重要的超参数之一。合适的学习率可以加速模型的收敛&#xff0c;提高训练效率&#xff0c;而不恰当的学习率可能导致训练过慢或者无法收敛。为了找到合适的学习率&#xff0c;LR Finder成为了一种强大的工具。 学习率范围测试&#x…

Django的ORM操作

文章目录 1.ORM操作1.1 表结构1.1.1 常见字段和参数1.1.2 表关系 2.ORM2.1 基本操作2.2 连接数据库2.3 基础增删改查2.3.1 增加2.3.2 查找2.3.4 删除2.3.4 修改 1.ORM操作 orm&#xff0c;关系对象映射&#xff0c;本质翻译的。 1.1 表结构 实现&#xff1a;创建表、修改表、…

思维模型 暗示效应

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。无形中引导他人的思想和行为。 1 暗示效应的应用 1.1 暗示效应在商业品牌树立中的应用 可口可乐的品牌形象&#xff1a;可口可乐通过广告、包装和营销活动&#xff0c;向消费者传递了一种…

【递归】求根节点到叶节点数字之和(Java版)

目录 1.题目解析 2.讲解算法原理 3.代码 1.题目解析 LCR 049. 求根节点到叶节点数字之和 给定一个二叉树的根节点 root &#xff0c;树中每个节点都存放有一个 0 到 9 之间的数字。 每条从根节点到叶节点的路径都代表一个数字&#xff1a; 例如&#xff0c;从根节点到叶节点…

伙伴(buddy)系统原理

一、伙伴算法的由来 在实际情况中&#xff0c;操作系统必须能够在任意时刻申请和释放任意大小的内存&#xff0c;该函数的实现需要考虑延时问题和碎片问题。 延时问题指的是系统查找到可分配单元的时间变长&#xff0c;例如程序请求分配一个64KB的内存空间&#xff0c;系统查看…

Technology Strategy Patterns 学习笔记9 - bringing it all together

1 Patterns Map 2 Creating the Strategy 2.1 Ansoff Growth Matrix 和owth-share Matrix 区别参见https://fourweekmba.com/bcg-matrix-vs-ansoff-matrix/ 3 Communicating

STM32F407: CMSIS-DSP库的移植(基于库文件)

目录 1. 源码下载 2. DSP库源码简介 3.基于库的移植(DSP库的使用) 3.1 实验1 3.2 实验2 4. 使用V6版本的编译器进行编译 上一篇&#xff1a;STM32F407-Discovery的硬件FPU-CSDN博客 1. 源码下载 Github地址&#xff1a;GitHub - ARM-software/CMSIS_5: CMSIS Version 5…

开发者测试2023省赛--Square测试用例

测试结果 官方提交结果 EclEmma PITest 被测文件 [1/7] Square.java /*** This class implements the Square block cipher.** <P>* <b>References</b>** <P>* The Square algorithm was developed by <a href="mailto:Daemen.J@banksys.co…

AWS云服务器EC2实例进行操作系统迁移

AWS云服务器EC2实例进行操作系统迁移 文章目录 AWS云服务器EC2实例进行操作系统迁移1. 亚马逊EC2云服务器简介1.2 亚马逊EC2云务器与弹性云服务器区别 2. 亚马逊EC2云服务器配置流程2.1 亚马逊EC2云服务器实例配置2.1.1 EC2实例购买教程2.1.1 EC2实例初始化配置2.1.2 远程登录E…

Gold-YOLO:基于收集-分配机制的高效目标检测器

文章目录 摘要1、简介2、相关工作2.1、实时目标检测器2.2、基于Transformer的目标检测2.3、用于目标检测的多尺度特征 3、方法3.1、预备知识3.2、低级收集和分发分支3.3、高阶段收集和分发分支3.4、增强的跨层信息流3.5、遮罩图像建模预训练 4、实验4.1、设置4.2、比较4.3.2、 …