深度学习 python opencv 火焰检测识别 计算机竞赛

news2025/1/11 21:50:17

文章目录

  • 0 前言
  • 1 基于YOLO的火焰检测与识别
  • 2 课题背景
  • 3 卷积神经网络
    • 3.1 卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
    • 4.1 网络架构图
    • 4.2 输入端
    • 4.3 基准网络
    • 4.4 Neck网络
    • 4.5 Head输出层
  • 5 数据集准备
    • 5.1 数据标注简介
    • 5.2 数据保存
  • 6 模型训练
    • 6.1 修改数据配置文件
    • 6.2 修改模型配置文件
    • 6.3 开始训练模型
  • 7 实现效果
    • 7.1图片效果
    • 7.2 视频效果
    • 7.3 摄像头实时效果
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的火焰识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 基于YOLO的火焰检测与识别

学长设计系统实现效果如下,精度不错!

在这里插入图片描述

在这里插入图片描述

2 课题背景

火灾事故的频发给社会造成不必要的财富损失以及人员伤亡,在当今这个社会消防也是收到越来越多的注视。火灾在发生初期是很容易控制的,因此,如何在对可能发生灾害的场所进行有效监控,使得潜在的损失危害降到最低是当前研究的重点内容。传统的探测器有较大的局限性,感温、感烟的探测器的探测灵敏度相对争分夺秒的灾情控制来说有着时间上的不足,而且户外场所的适用性大大降低。随着计算机视觉的发展,基于深度学习的图像处理技术已经愈发成熟并且广泛应用在当今社会的许多方面,其在人脸识别、安防、医疗、军事等领域已经有相当一段时间的实际应用,在其他领域也展现出跟广阔的前景。利用深度学习图像处理技术对火灾场景下火焰的特征学习、训练神经网络模型自动识别火焰,这项技术可以对具有监控摄像头场景下的火灾火焰进行自动、快速、准确识别并设置预警装置,从而在火灾发生的初期及时响应,赢得更多的时间,把损失降到最低。

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

3.1 卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

4 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

4.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

4.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

4.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

4.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

4.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):
          stride = None  # strides computed during build
          onnx_dynamic = False  # ONNX export parameter
            
          def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
              super().__init__()
              self.nc = nc  # number of classes
              self.no = nc + 5  # number of outputs per anchor
              self.nl = len(anchors)  # number of detection layers
              self.na = len(anchors[0]) // 2  # number of anchors
              self.grid = [torch.zeros(1)] * self.nl  # init grid
              self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
            self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
              self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
              self.inplace = inplace  # use in-place ops (e.g. slice assignment)
            
          def forward(self, x):
              z = []  # inference output
              for i in range(self.nl):
                x[i] = self.m[i](x[i])  # conv
                  bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                  x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            
    
                  if not self.training:  # inference
                      if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                          self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
            
                      y = x[i].sigmoid()
                      if self.inplace:
                          y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                          y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                      else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                        xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                          wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                        y = torch.cat((xy, wh, y[..., 4:]), -1)
                      z.append(y.view(bs, -1, self.no))
            
              return x if self.training else (torch.cat(z, 1), x)
    
          def _make_grid(self, nx=20, ny=20, i=0):
              d = self.anchors[i].device
              if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
                  yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
              else:
                  yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
              grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
              anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
                  .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
              return grid, anchor_grid
    
    
    

5 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

5.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

5.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

6 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

6.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为fire.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,我这里是识别有无火焰,所以这里填写2;最后箭头4中填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

6.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

6.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

7 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI



    #部分代码
    from PyQt5 import QtCore, QtGui, QtWidgets


    class Ui_Win_mask(object):
        def setupUi(self, Win_mask):
            Win_mask.setObjectName("Win_mask")
            Win_mask.resize(1107, 868)
            Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"
    "ui.pushButton->setStyleSheet(qstrStylesheet);")
            self.frame = QtWidgets.QFrame(Win_mask)
            self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))
            self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
            self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
            self.frame.setObjectName("frame")
            self.pushButton = QtWidgets.QPushButton(self.frame)
            self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton.setFont(font)
            self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton.setObjectName("pushButton")
            self.pushButton_2 = QtWidgets.QPushButton(self.frame)
            self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton_2.setFont(font)
            self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton_2.setObjectName("pushButton_2")
            self.pushButton_3 = QtWidgets.QPushButton(self.frame)
            self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))
            QtCore.QMetaObject.connectSlotsByName(Win_mask)



7.1图片效果

在这里插入图片描述

7.2 视频效果

在这里插入图片描述

7.3 摄像头实时效果

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1196395.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《红蓝攻防对抗实战》九.内网穿透之利用GRE协议进行隧道穿透

​ 前文推荐: 《红蓝攻防对抗实战》一. 隧道穿透技术详解 《红蓝攻防对抗实战》二.内网探测协议出网之TCP/UDP协议探测出网 《红蓝攻防对抗实战》三.内网探测协议出网之HTTP/HTTPS协议探测出网 《红蓝攻防对抗实战》四.内网探测协议出网之ICMP协议探测出网 《红蓝…

AI:86-基于深度学习的人体姿态估计与运动分析

🚀 本文选自专栏:人工智能领域200例教程专栏 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的代码,详细讲解供大家学习,希望可以帮到大家。欢迎订阅支持,正在不断更新中,…

数据结构线性表——带头双向循环链表

前言:小伙伴们好久不见啦,上篇文章我们一起学习了数据结构线性表其一的单链表,了解了单链表的不少好处,但是不可能有完美的数据结构,就算是单链表,也会有很多缺点。 那么今天这篇文章,我们就来…

全网最细,Apipost接口自动化测试-关联配置,老鸟带你上高速...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 在接口自动化测试…

Arduino到底适不适合做产品

文章目录 一、Arduino性能很低,不如树莓派等开发板,所以不要用Arduino做开发二、Arduino程序效率很低,所以不要用Arduino做开发三、Arduino只能开发玩具,不能做产品四、Arduino开发板成本太高,不适合做产品总结个人见解…

iPhone或在2024开放第三方应用商店。

iPhone或开放第三方应用商店,可以说这是一个老生常谈的话题。对于像是iOS这样封闭的系统来说,此前传出苹果可能开放侧载消息的时候,又有谁能信,谁会信? 如果是按照苹果自身的意愿,这种事情自然是不可能发生…

【LeetCode笔试题】88.合并两个有序数组

问题描述 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。 注意:最终,合…

王学岗visibility改变后调用onLayout()

自定义控件的时候发现了一个bug。 Button位移动画执行结束后我设置了一个不相关的TextView的可见性由gone变为visible.令人郁闷的是,只要我注释的地方放开。动画执行结束后button都会重新绘制在位移动画开始的位置。注释掉这段代码就正常。 经过分析后得知 View的Vi…

python OrderedDict类(有序字典)

嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 创建有序字典 import collectionsdic collections.OrderedDict() dic[k1] v1 dic[k2] v2 dic[k3] v3 print(dic)#输出:OrderedDict([(k1, v1), (…

Vatee万腾科技决策力的未来展望:开创数字化创新的新高度

随着科技不断演进,Vatee万腾的科技决策力在数字化创新领域展现出了强大的潜力和前瞻性。 Vatee万腾的科技决策力被视为数字化创新的引擎,为未来创新注入了新的动力。通过深刻的市场洞察和科学决策,Vatee万腾致力于推动数字化创新走向新的高度…

图论11-欧拉回路与欧拉路径+Hierholzer算法实现

文章目录 1 欧拉回路的概念2 欧拉回路的算法实现3 Hierholzer算法详解4 Hierholzer算法实现4.1 修改Graph,增加API4.2 Graph.java4.3 联通分量类4.4 欧拉回路类 1 欧拉回路的概念 2 欧拉回路的算法实现 private boolean hasEulerLoop(){CC cc new CC(G);if(cc.cou…

可视化 | 3D文字球状标签云

文章目录 📚改编点📚final 改编自echarts 3d词云(指向滑动、拖动、缩放、点击、自转 ) 📚改编点 背景透明:background:rgb(0,0,0,0);不用链接,用span,重点span标class"star&q…

2023年成为优秀自动化测试工程师的 7 个步骤!

“测试自动化测试工程师可以将你从充满代码的世界中拯救出来。”企业完全同意这一说法,这就是您在自动化测试行业中看到大量就业机会的原因。我在 Quora 上收到了很多与自动化测试中的职业选择相关的答案请求,以及人们如何在有或没有手动测试经验的情况下…

Pytorch从零开始实战09

Pytorch从零开始实战——YOLOv5-Backbone模块实现 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——YOLOv5-Backbone模块实现环境准备数据集模型选择开始训练可视化模型预测总结 环境准备 本文基于Jupyter notebook,使用Python3.…

PyBind11五分钟入门【Python/C++调用】

从 Python 调用 C 基本上有两种方法:使用 PyBind11 C 库生成 Python 模块,或使用 cytpes Python 包访问已编译的共享库。 使用 PyBind11 我们可以更轻松地共享许多数据类型,而使用 ctypes 是一种低级 C 风格的解决方案。 在线工具推荐&#x…

synchronized的原理和Callable接口

目录 ♫synchronized原理 ♪锁升级 ♪锁优化 ♫Callable接口 ♫synchronized原理 我们知道synchronized锁可以控制多个线程对共享资源的访问,两个线程针对同一变量访问就会产生阻塞等待。而synchronized锁并不是一成不变的,它会根据情况进行一次升级。…

MySQL---存储过程

存储过程的相关概念 是一组为了完成特定功能的sql语句的集合,类似于函数 写好了一个存储过程之后,我们可以像函数一样随时调用sql的集合。 复杂的,需要很多sql语句联合执行完成的任务 存储过程再执行上比sql语句的执行速度更快&#xff0c…

CS224W5.2——Relational and Iterative Classification

本节中,我们介绍用于节点分类的关系分类器和迭代分类。 从关系分类器开始,我们展示了如何基于邻居的标签迭代更新节点标签的概率。然后讨论迭代分类,通过根据邻居的标签及其特征预测节点标签来改进集体分类。 文章目录 1. 框架2. 关系分类3.…

基于SpringBoot的SSMP整合案例(开启日志与分页查询条件查询功能实现)

开启事务 导入Mybatis-Plus框架后,我们可以使用Mybatis-Plus自带的事务,只需要在配置文件中配置即可 使用配置方式开启日志,设置日志输出方式为标准输出mybatis-plus:global-config:db-config:table-prefix: tb_id-type: autoconfiguration:…

【黑客】最适合小白的学习顺序

一、黑客是什么 原是指热心于计算机技术,水平高超的电脑专家,尤其是程序设计人员。但后来,黑客一词已被用于泛指那些专门利用电脑网络搞破坏或者恶作剧的家伙。 二、学习黑客技术的原因 其实,网络信息空间安全已经成为海陆空之…