深度学习 python opencv 动物识别与检测 计算机竞赛

news2025/1/9 15:48:02

文章目录

  • 0 前言
  • 1 深度学习实现动物识别与检测
  • 2 卷积神经网络
    • 2.1卷积层
    • 2.2 池化层
    • 2.3 激活函数
    • 2.4 全连接层
    • 2.5 使用tensorflow中keras模块实现卷积神经网络
  • 3 YOLOV5
    • 3.1 网络架构图
    • 3.2 输入端
    • 3.3 基准网络
    • 3.4 Neck网络
    • 3.5 Head输出层
  • 4 数据集准备
    • 4.1 数据标注简介
    • 4.2 数据保存
  • 5 模型训练
    • 5.1 修改数据配置文件
    • 5.2 修改模型配置文件
    • 5.3 开始训练模型
  • 6 实现效果
    • 6.1图片效果
    • 6.2 视频效果
    • 6.3 摄像头实时效果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的动物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 深度学习实现动物识别与检测

学长实现的动态检测效果,精度还是非常高的!
在这里插入图片描述

2 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

2.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

2.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

2.3 激活函数

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

2.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

2.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

3 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

3.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

3.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

3.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

3.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

3.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

相关代码

  class Detect(nn.Module):
  stride = None  # strides computed during build
  onnx_dynamic = False  # ONNX export parameter
    
  def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
      super().__init__()
      self.nc = nc  # number of classes
      self.no = nc + 5  # number of outputs per anchor
      self.nl = len(anchors)  # number of detection layers
      self.na = len(anchors[0]) // 2  # number of anchors
      self.grid = [torch.zeros(1)] * self.nl  # init grid
      self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
      self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
      self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
      self.inplace = inplace  # use in-place ops (e.g. slice assignment)
    
  def forward(self, x):
      z = []  # inference output
      for i in range(self.nl):
          x[i] = self.m[i](x[i])  # conv
          bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
          x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
    

          if not self.training:  # inference
              if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                  self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
    
              y = x[i].sigmoid()
              if self.inplace:
                  y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                  y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
              else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                  xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                  wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                  y = torch.cat((xy, wh, y[..., 4:]), -1)
              z.append(y.view(bs, -1, self.no))
    
      return x if self.training else (torch.cat(z, 1), x)

  def _make_grid(self, nx=20, ny=20, i=0):
      d = self.anchors[i].device
      if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
          yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
      else:
          yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
      grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
      anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
          .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
      return grid, anchor_grid

4 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

4.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

4.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

5 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

5.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为animal_data.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,这里识别有6种动物,所以这里填写6;最后填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

5.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

5.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI



    #部分代码
    from PyQt5 import QtCore, QtGui, QtWidgets

    class Ui_Win_animal(object):
        def setupUi(self, Win_animal):
            Win_animal.setObjectName("Win_animal")
            Win_animal.resize(1107, 868)
            Win_animal.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"
    "ui.pushButton->setStyleSheet(qstrStylesheet);")
            self.frame = QtWidgets.QFrame(Win_animal)
            self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))
            self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
            self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
            self.frame.setObjectName("frame")
            self.pushButton = QtWidgets.QPushButton(self.frame)
            self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton.setFont(font)
            self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton.setObjectName("pushButton")
            self.pushButton_2 = QtWidgets.QPushButton(self.frame)
            self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton_2.setFont(font)
            self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton_2.setObjectName("pushButton_2")
            self.pushButton_3 = QtWidgets.QPushButton(self.frame)
            self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))
            QtCore.QMetaObject.connectSlotsByName(Win_animal)


6.1图片效果

在这里插入图片描述

6.2 视频效果

在这里插入图片描述

6.3 摄像头实时效果

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1194596.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何帮助 3D CAD 设计师实现远程办公

当 3D CAD 设计师需要远程办公时,他们可能需要更强的远程软件,以满足他们的专业需求。比如高清画质,以及支持设备重定向、多显示器支持等功能。3D CAD 设计师如何实现远程办公?接下来我们跟随 Platinum Tank Group 的故事来了解一…

百度王颖:百度文库以AI创作能力突破语言边界,促进思想碰撞和文化融通

1月9日,2023年世界互联网大会乌镇峰会“网络传播与文明交流互鉴论坛”召开。百度副总裁、互娱和垂类平台负责人王颖出席并发表“以技术搭建跨文化交流桥梁”主题演讲。她表示,在大模型的加持下,百度各个产品都在重构,通过技术助力…

链表练习题

作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 ​🎂 作者介绍: 🎂🎂 🎂 🎉🎉&#x1f389…

【数据结构】反射、枚举

⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈数据结构 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 反射、枚举 1. 反射1.1 定义1.2 反射…

建造者模式 rust和java的实现

文章目录 建造者模式介绍优点缺点使用场景 实现javarust rust代码仓库 建造者模式 建造者模式(Builder Pattern)使用多个简单的对象一步一步构建成一个复杂的对象。 一个 Builder 类会一步一步构造最终的对象。该 Builder 类是独立于其他对象的。 介绍…

gird 卡片布局

场景一:单元格大小相等 这承载了所有 CSS Grid 中最著名的片段,也是有史以来最伟大的 CSS 技巧之一: 等宽网格响应式卡片实现 .section-content {display: grid;grid-template-columns: repeat(auto-fit, minmax(220px, 1fr));gap: 10px; …

系列二十二、idea Live Templates

一、idea Live Templates 1.1、Java Group 1.1.1、fast fast 快速在类上添加注解Data AllArgsConstructor NoArgsConstructor Accessors(chain true) ToString(callSuper true) 1.1.2、getThreadName getThreadName快速获取当前线程的名字Thread.currentThread().getName…

故障诊断模型 | Maltab实现ELM极限学习机的故障诊断

文章目录 效果一览文章概述模型描述源码设计参考资料效果一览 文章概述 故障诊断模型 | Maltab实现ELM极限学习机的故障诊断 模型描述 在机器学习领域,我们常常需要通过训练数据来学习一个函数模型,以便在未知的数据上进行预测或分类。传统的神经网络模型需要大量的参数调整和…

54基于matlab的包络谱分析

基于matlab的包络谱分析,目标信号→希尔伯特变换→得到解析信号→求解析信号的模→得到包络信号→傅里叶变换→得到Hilbert包络谱,包络谱分析能够有效地将这种低频冲击信号进行解调提取。程序已调通,可直接运行。 54matlab包络谱分析信号解调…

高德地图添加信息弹窗,信息弹窗是单独的组件

//弹窗组件 <template><el-card class"box-card" ref"boxCard" v-if"showCard"><div slot"header" class"clearfix"><div class"title">{{ model.pointName }}</div><div class…

《单链表》的实现(不含哨兵位的单向链表)

目录 ​编辑 前言&#xff1a; 链表的概念及结构&#xff1a; 链表的实现&#xff1a; 1.typedef数据类型&#xff1a; 2.打印链表 &#xff1a; 3.创建新节点&#xff1a; 4.尾插 &#xff1a; 5.头插&#xff1a; 6.尾删 &#xff1a; 7.头删&#xff1a; 8.查找节…

VScode + opencv(cmake编译) + c++ + win配置教程

1、下载opencv 2、下载CMake 3、下载MinGW 放到一个文件夹中 并解压另外两个文件 4、cmake编译opencv 新建文件夹mingw-build 双击cmake-gui 程序会开始自动生成Makefiles等文件配置&#xff0c;需要耐心等待一段时间。 简单总结下&#xff1a;finish->configuring …

041:vue中 el-table每个单元格包含多个数据项处理

第041个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

USB偏好设置-Android13

USB偏好设置 1、USB偏好设置界面和入口2、USB功能设置2.1 USB功能对应模式2.2 点击设置2.3 广播监听刷新 3、日志开关3.1 Evet日志3.2 代码中日志开关3.3 关键日志 4、异常 1、USB偏好设置界面和入口 设置》已连接的设备》USB packages/apps/Settings/src/com/android/setting…

写一下关于部署项目到服务器的心得(以及遇到的难处)

首先要买个服务器(本人的是以下这个) 这里我买的是宝塔面板的,没有宝塔面板的也可以自行安装 点击登录会去到以下页面 在这个界面依次执行下面命令会看到账号和密码和宝塔面板内外网地址 sudo -s bt 14点击地址就可以跳转宝塔对应的内外网页面 然后使用上述命令提供的账号密…

听GPT 讲Rust源代码--library/core/src

题图来自 The first unofficial game jam for Rust lang![1] File: rust/library/core/src/hint.rs rust/library/core/src/hint.rs文件的作用是提供了一些用于提示编译器进行优化的函数。 在Rust中&#xff0c;编译器通常会根据代码的语义进行自动的优化&#xff0c;以提高程序…

LeetCode(6)轮转数组【数组/字符串】【中等】

目录 1.题目2.答案3.提交结果截图 链接&#xff1a; 189. 轮转数组 1.题目 给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1…

npm install 报错 chromedriver 安装失败的解决办法

npm install chromedriver --chromedriver_cdnurlhttp://cdn.npm.taobao.org/dist/chromedriver

Linux imu6ull驱动- led

一、GPIO模块结构 开始来啃手册了&#xff0c;打开我们的imx6ull手册。本章我们编写的是GPIO的&#xff0c;打开手册的第28章&#xff0c;这一章就有关于IMX6ULL 的 GPIO 模块结构。 mx6ull一共有5 组 GPIO&#xff08;GPIO1&#xff5e;GPIO5&#xff09; GPIO1 有 32 个引脚&…

Python 的 datetime 模块

目录 简介 一、date类 &#xff08;一&#xff09;date 类属性 &#xff08;二&#xff09;date 类方法 &#xff08;三&#xff09;实例属性 &#xff08;四&#xff09;实例的方法 二、time类 &#xff08;一&#xff09;time 类属性 &#xff08;二&#xff09;tim…