【机器学习基础】机器学习概述

news2024/11/25 18:34:09

目录

前言

一、机器学习概念

二、机器学习分类

三、机器学习术语


🌈嗨!我是Filotimo__🌈。很高兴与大家相识,希望我的博客能对你有所帮助。

💡本文由Filotimo__✍️原创,首发于CSDN📚。

📣如需转载,请事先与我联系以获得授权⚠️。

🎁欢迎大家给我点赞👍、收藏⭐️,并在留言区📝与我互动,这些都是我前进的动力!

🌟我的格言:森林草木都有自己认为对的角度🌟。

前言

当今社会,机器学习已经成为一项引人注目且深具影响力的技术。随着大数据、云计算和强大的计算能力的快速发展,机器学习正在改变我们的生活方式、商业模式以及整个产业链。无论是在自动驾驶汽车、智能助理还是个性化推荐系统中,机器学习的应用正变得越来越广泛。

希望通过本博客的阅读,您能够对机器学习有一个最基本的了解。机器学习的发展潜力巨大,我们期待您与我们一同探索这个充满可能性和创新的领域。让我们一起踏上机器学习之旅吧!

这是本篇文章的脉络图:


一、机器学习概念

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

人工智能,机器学习,深度学习三者之间的关系:

人工智能(Artificial Intelligence,简称AI)是指使计算机能够展示出人类智能的一门学科。

机器学习(Machine Learning)是AI的一个分支,它利用数据和统计概念,使机器能够通过学习和改进经验,给出准确的预测和决策,而无需明确地进行编程。

深度学习(Deep Learning)是机器学习的一种特殊形式,它模仿人脑神经网络的结构和功能。深度学习使用人工神经网络来模拟和学习大规模数据,通过多层次的神经元堆叠,可以自动提取和学习数据的高级特征。

因此,三者之间为包含关系,即人工智能包含机器学习,而机器学习又包含深度学习。

常见的机器学习定义:

1. "机器学习是一种人工智能的分支,它使计算机能够从数据中学习并自动改进无需明确编程"。这个定义强调了机器学习的能力,即通过算法和模型从数据中学习,并自动提高性能。

2. "机器学习是一门研究如何使计算机从经验中自动改善性能的科学"。这个定义将机器学习看作是一门科学,关注的是如何利用数据和经验改进计算机系统的性能。

3. "机器学习是一种能够让计算机通过从数据中学习来推断规律,并应用这些规律进行预测和决策的技术"。这个定义强调了机器学习的应用性质,即通过学习数据中的规律来进行预测和决策。

4. "机器学习是一种通过建立数学模型和算法,使计算机能够识别和理解数据,并根据数据进行预测和决策的方法"。这个定义强调了机器学习的数学建模和算法设计的重要性,以及通过这些方法进行数据分析和应用的能力。

机器学习三要素:

机器学习方法=模型+策略+算法

1. 模型:模型是机器学习的核心组成部分,它用来表示输入数据和输出结果之间的关系。模型可以是线性模型、决策树、神经网络等,用来学习数据的特征和规律。

2. 策略:策略定义了机器学习算法的目标和学习的方法。比如,最小化预测误差或最大化预测准确率。策略可以使用各种不同的评估指标和优化方法。

3. 算法:算法是实现机器学习方法的具体步骤和计算过程。它包括数据预处理、特征选择、模型训练和模型评估等步骤。常见的机器学习算法包括线性回归、决策树、支持向量机、深度学习等。

二、机器学习分类

2.1 按任务类型分类

1.回归问题

回归问题的目标是根据输入数据的特征,预测一个连续的数值输出。回归算法通过建立输入特征与输出之间的关系模型来进行预测。例如,给定房屋的大小、位置、房间数量等特征,我们可以使用回归算法来预测房屋的价格。回归问题的评估通常使用均方误差、或平均绝对误差、等指标。

2.分类问题

分类问题的目标是将输入数据分为不同的类别或标签。分类算法通过学习不同类别之间的特征和决策边界来进行预测。例如,给定一组电子邮件,我们可以使用分类算法来判断它们是垃圾邮件还是正常邮件。分类问题的评估通常使用准确率、精确率和召回率等指标。

3.聚类问题

聚类问题的目标是将输入数据分为不同的群组,每个群组内部的样本相似度较高,而不同群组之间的相似度较低。聚类算法通过计算样本之间的相似性和距离来进行分组。例如,根据用户的购买历史和行为特征,我们可以使用聚类算法将用户分成不同的群组,以便个性化推荐。聚类问题的评估通常使用轮廓系数和Calinski-Harabasz指数等指标。

4.降维问题

降维问题的目标是将高维数据转化为低维数据,同时保留重要的特征信息。降维算法通常通过某种方式减少数据的维度,以便更好地进行可视化或更高效地进行后续处理。常见的降维方法包括主成分分析(PCA)和线性判别分析(LDA)。例如,通过应用PCA,我们可以从包含多个特征的数据中提取最重要的几个特征,从而减少数据的维度。降维问题的评估通常使用保留的方差比例或信息损失等指标。

2.2 按学习方式分类

1.有监督学习

有监督学习是指机器学习中的一类任务,其中算法从标记的训练数据中学习输入数据与输出标签之间的关系。在有监督学习中,训练数据包含输入特征和相应的标签或输出值,模型的目标是通过学习这些训练样本来对新的未标记数据进行预测。常见的有监督学习算法包括线性回归、决策树、支持向量机和神经网络。例如,给定一组带有房屋特征(如面积、位置、房间数量)和相应销售价格的数据,我们可以使用有监督学习算法来构建一个模型,该模型可以根据输入特征预测房屋的价格。

2.无监督学习

无监督学习是指机器学习中的一类任务,其中算法从无标签的训练数据中学习数据背后的隐含结构和模式。在无监督学习中,训练数据只包含输入特征,没有相应的标签或输出值。无监督学习的目标是发现数据中的聚类、关联或降维等模式,以获得对数据的更深入理解。常见的无监督学习算法包括聚类算法(如k均值聚类、层次聚类)、关联规则挖掘和主成分分析(PCA)。例如,通过对一组顾客购买历史的无标签数据进行聚类分析,我们可以发现不同的购买行为模式,从而更好地了解顾客的购买习惯。

3.半监督学习

半监督学习是介于有监督学习和无监督学习之间的一类学习方式。在半监督学习中,算法使用一小部分标记的训练数据和大量无标记的训练数据进行学习。有标签的训练数据用于指导模型的学习,无标签的数据用于发现数据的潜在结构和模式。半监督学习的目标是通过利用无标签数据的信息来提高模型的性能和泛化能力。常见的半监督学习算法包括标签传播算法、自训练和生成模型。例如,在图像分类任务中,我们可以使用带有标签的图像以及大量无标签的图像来训练模型,提高分类的准确度。

4.强化学习

强化学习是一种机器学习方式,其中算法通过与环境的交互来学习最佳的行动策略。在强化学习中,算法以代理的方式与环境进行交互,并根据执行的动作获得奖励或惩罚。通过通过试错过程,算法逐步学习选择最佳的行动以最大化累计奖励。强化学习常用于需要进行序列决策的任务,例如游戏策略、机器人控制和自动驾驶。强化学习算法包括Q-learning、深度强化学习和策略梯度等。例如,在训练自动驾驶汽车时,强化学习算法可以学习最佳的驾驶策略以确保行驶

三、机器学习术语

1. 属性或特征:在机器学习中,属性或特征是指用来描述样本的相关信息或特征,比如图像中的像素值、文本中的单词频率、声音中的频率等等。属性既可以是数值型的,也可以是类别型的,例如一个人的身高和性别就是数值型和类别型的属性。

2. 属性值:属性值是指某个样本在某个属性上的取值,例如一个人的身高属性可能取值为175 cm,性别属性可能取值为“男”。

3. 示例或样本:在机器学习中,示例或样本是指用来训练或测试模型的数据单位,通常由一组属性和对应的属性值构成。例如在手写数字识别任务中,一个示例可以是一张图片,图片中的像素值和标识出的数字就是该样本的属性和属性值。

4. 数据集:数据集是指存储和组织示例和属性的集合,它常用于机器学习算法的训练和测试。数据集包含多个示例或样本,每个示例有多个属性。

5. 样本空间或属性空间:样本空间或属性空间是指所有可能的示例组成的空间,它包含了数据集中所有示例和属性,但不包括标记或输出。

6. 空间特征向量:空间特征向量是指将样本在属性空间中的属性值按照一定顺序组成的向量,它是描述和表示样本的一种方式,通常用于机器学习算法的训练和测试。

7. 标记空间或输出空间:标记空间或输出空间是指所有可能标记或输出的集合,它包含了机器学习任务中需要预测的结果或输出。例如在手写数字识别任务中,标记空间可以是数字1~9和空白,即每个示例需要被预测为这些标记中的一个。


总结

从医疗领域的疾病诊断、药物研发到金融领域的风险评估、投资分析,机器学习正在为我们的生活带来巨大的改变。在电子商务中,个性化推荐系统已经成为了提升用户体验和销售额的重要工具。而在智能交通领域,自动驾驶技术正在推动着出行方式的革新。

然而,我们也意识到机器学习所面临的一些挑战和限制。其中之一是数据隐私和安全问题。由于机器学习算法需要大量的数据来进行训练,我们必须确保用户数据的安全,并遵守相关的法律法规。

尽管机器学习面临着一些挑战和限制,但我们相信,在社会各界的共同努力下,这些问题可以得到解决。机器学习将继续发展,为我们的生活带来更多的便利和创新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1186628.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mysql数据库 11.SQL语言 储存过程 下 储存过程管理和游标

一、存储过程管理 1.查询存储过程 查询所有储存过程 语法 show procedure status; 代码实现 #查询存储过程 show procedure status; 运行结果 加入条件查询储存过程 语法 show procedure status where db储存过程名; 代码实现 #查询带有条件的储存过程 查询名字为pro…

第五届泰迪杯数据分析技能赛B题源码图片分享

需要B题源码以及第六届带队”指导“请私信本人,团队包含技能赛双一等,数学建模省一,泰迪杯挖掘国一,研究生队友。 去年一等作品可视化图如下,私信获取源码

clickhouse通过java jdbc实现增删改查,保姆级教程

一、clickhouse是一款开源的用于在线分析处理查询(OLAP :Online Analytical Processing)MPP架构的列式存储数据库。 二、clickhouse可以做用户行为分析,流批一体 三、我们现在用java通过jdbc的方式来操作clickhouse 四、先安装clickhouse,安装资料自行…

长春理工大学漏洞报送证书

获取来源:edusrc(教育漏洞报告平台) url:主页 | 教育漏洞报告平台 兑换价格:10金币 获取条件:提交长春理工大学任意中危或以上级别漏洞

尚硅谷大数据项目《在线教育之实时数仓》笔记007

视频地址:尚硅谷大数据项目《在线教育之实时数仓》_哔哩哔哩_bilibili 目录 第9章 数仓开发之DWD层 P053 P054 P055 P056 P057 P058 P059 P060 P061 P062 P063 P064 P065 第9章 数仓开发之DWD层 P053 9.6 用户域用户注册事务事实表 9.6.1 主要任务 读…

kafka笔记要点和集群安装、消息分组、消费者分组以及与storm的整合机制

kafka笔记 1/kafka是一个分布式的消息缓存系统 2/kafka集群中的服务器都叫做broker 3/kafka有两类客户端,一类叫producer(消息生产者),一类叫做consumer(消息消费者),客户端和broker服务器之间…

SAP BASIS SET_PARAMETER_ID_TOO_LONG

ji 原因 DATA:curvbelnid(40) TYPE c,"问题在这里curposnrid(40) TYPE c. "问题在这里curvbelnid sy-uname && VN.curposnrid sy-uname && PR.SET PARAMETER ID curvbelnid FIELD i_vbeln . SET PARAMETER ID curposnrid FIELD i_posnr . 改成 D…

【Proteus仿真】【STM32单片机】汽车尾灯控制设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真STM32单片机控制器,使用按键、LED模块等。 主要功能: 系统运行后,系统运行后,系统开始运行,K1键控制左转向灯&#xff…

web前端-Gulp入门

web前端-Gulp入门 gulp的概述使用gulp准备工作gulp的常用APIgulp的常用插件gulpfile.js的初体验打包css文件打包scss文件打包js打包html打包images创建一个默认任务创建一个删除任务gulp启动服务创建一个监控任务 gulp的概述 gulp: 前端自动化打包固件工具&#xf…

uniapp在不需要后端数据的情况下 怎么记录用户进一次记录一次

目录 前言&#xff1a; html部分 js部分 完整代码 前言&#xff1a; 一时兴起&#xff0c;不喜勿喷&#xff0c;今天听到了这个问题想到了一个方法&#xff0c;解决方式如下。 html部分 他用于显示访问次数&#xff08;visitCount变量的值&#xff09;。 <template&…

Day24力扣打卡

打卡记录 寻找峰值&#xff08;二分法&#xff09; class Solution { public:int findPeakElement(vector<int> &nums) {int left -1, right nums.size() - 1; // 开区间 (-1, n-1)while (left 1 < right) { // 开区间不为空int mid left (right - left) / …

【Vue】vant2使用van-tree-select实现【全选、反选、搜索】,自定义组件,拿去即用。2.0版本保姆级教程

系列文章目录 这是原篇教程&#xff0c;本篇为升级版&#xff0c;旧版已废弃。对你们不友好。 【Vue】vue2移动端 &#xff0c;vant2使用van-tree-select分类选择实现【全选】和【取消全选】、【搜索过滤当前children】&#xff0c;只影响当前显示children&#xff0c;并且去重…

clickhouse.22.8.3.13单机版安装

介绍 1、clickhouse是一款优秀的开源MPP数据库。 安装ClickHouse的步骤如下&#xff1a; 2、下载clickhouse https://repo.clickhouse.tech/tgz/ 但是这个下载太慢了&#xff0c;找个国内的镜像 https://mirrors.aliyun.com/clickhouse/ 我们采用阿里云的镜像地址。 cli…

An error occurred while filtering resources

Description Path Resource Location Type An error occurred while filtering resources PMS line 1 Maven Java EE Configuration Problem不知道怎么跑出来了&#xff0c;update project 还是不行 但是不影响运行&#xff0c;奇…

记录两个Excel导出出现的问题

问题一&#xff1a;导出数据时&#xff0c;这行代码返回null&#xff0c;导致导出excel失败&#xff1b; Workbook workbook ExcelExportUtil.exportExcel(params, map);解决&#xff1a;排查出来&#xff0c;是因为版本问题&#xff0c;autopoi版本是1.2.1&#xff1b; 升级…

MCU系统的调试技巧

MCU系统的调试技巧对于确保系统稳定性和性能至关重要。无论是在嵌入式系统开发的初期阶段还是在产品维护和优化的过程中&#xff0c;有效的调试技巧可以帮助开发人员快速发现和解决问题&#xff0c;本文将讨论一些MCU系统调试的技巧。 首先&#xff0c;使用调试工具是非常重要…

小程序day05

使用npm包 Vant Weapp 类似于前端boostrap和element ui那些的样式框架。 安装过程 注意:这里建议直接去看官网的安装过程。 vant-weapp版本最好也不要指定 在项目目录里面先输入npm init -y 初始化一个包管理配置文件: package.json 使用css变量定制vant主题样式&#xff0…

红队专题-从零开始VC++C/S远程控制软件RAT-MFC-远程控制软件总结

红队专题 招募六边形战士队员[30]远控班第一期课程与远控总结 招募六边形战士队员 一起学习 代码审计、安全开发、web攻防、逆向等。。。 私信联系 [30]远控班第一期课程与远控总结 一.Bug修复(1)生成路径(2)显示系统版本号二.内存泄露(1)如何检查内存泄露 #define CRTDBG_…

Modbus通讯模拟仿真环境的搭建

文章目录 一、概要二、所需工具介绍三、搭建虚拟仿真环境1.Modbus RTU虚拟仿真环境搭建1.1.虚拟串口工具&#xff08;VSPD&#xff09;使用1.2.虚拟从站工具&#xff08;ModSim32&#xff09;使用1.3.虚拟主站工具&#xff08;Modscan32&#xff09;使用1.4.更改虚拟从站工具&a…

如何处理数据集内的缺失值?

照片 奥坎耶尼贡 由Pierre Bamin在Unsplash上拍摄 一、说明 也许数据科学或机器学习问题研究中要求最高的阶段是数据预处理阶段&#xff0c;其目的是最终创建有用的数据集。如果说处理很酷的机器学习模型是阿喀琉斯的热门&#xff0c;那么数据预处理就是被诅咒的西西弗斯。…