基于人工蜂鸟算法的无人机航迹规划-附代码

news2024/12/24 9:12:07

基于人工蜂鸟算法的无人机航迹规划

文章目录

  • 基于人工蜂鸟算法的无人机航迹规划
    • 1.人工蜂鸟搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用人工蜂鸟算法来优化无人机航迹规划。

1.人工蜂鸟搜索算法

人工蜂鸟算法原理请参考:https://blog.csdn.net/u011835903/article/details/128386612

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得人工蜂鸟搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用人工蜂鸟算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,人工蜂鸟算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1181649.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【kubernetes】k8s组件

文章目录 1、概述2、控制平面组件(Control Plane Components)2.1 kube-apiserver2.2 etcd2.3 kube-scheduler2.4 kube-controller-manager2.5 cloud-controller-manager 3、Node组件3.1 kubelet3.2 kube-proxy3.3 容器运行时(Container Runti…

基础算法-回溯算法-案例

现象: 基础算法-回溯算法-案例 基础算法-回溯算法从不同角度出发 去寻找答案 找到答案或者走不通了(根据需求:找一个答案还是列举全部答案) 则回溯返回继续从下一条路出发 去寻找答案, 一直到走完 常见案例: 案例一: 通过输入一个不重复数…

找到【SVM】中最优的惩罚项系数C

因为本来SVM是想找到间隔最大的分割面,所以C越大,SVC会选择边际更小的,能够更好的分类所有训练点的决策边界,不过模型的训练时间也会越长。如果C的设定值较小,那SVC会尽量最大化边界,决策功能会更简单&…

4.求1000以内的所有完数

#include<stdio.h> // 完数&#xff1a;一个数的所有的真因子 (即除了自身以外的约数)的和&#xff0c;恰好等于它自身 // 1 不是完数 // 4的因子&#xff1a;1 2 4 除了本身 4 不等于 1&#xff0b;2 所以4不是完数void fun(void){int sum,i,j;for(i2;i<1000;i)…

架构师必备-DDD之落地实践

1. 走进 DDD 1.1 为什么要用 DDD &#xff1f; 面向对象设计&#xff0c;数据行为绑定&#xff0c;告别贫血模型&#xff1b;降低复杂度&#xff0c;分而治之&#xff1b;优先考虑领域模型&#xff0c;而不是切割数据和行为&#xff1b;准确传达业务规则&#xff0c;业务优先…

Unity中Shader再议ATTENUATION

文章目录 前言一、实现实时阴影的投射1、直接复制之前实现投射阴影的Pass 二、实现实时阴影的接受&#xff0c;同时实现光照衰减1、在 v2f 中使用这个2、在 顶点着色器 中使用这个3、在 片元着色器 中使用这个 前言 在之前文章中&#xff0c;实现了 Global Illumination 的直接…

python 之切片

文章目录 基本切片语法负索引step 为负使用负数的 Step从右向左提取间隔提取 注意事项切片的应用切片运用到字符串、元组、range对象字符串切片基本字符串切片使用步长进行操作 元组切片基本元组切片使用步长进行操作 range 对象切片基本 range 切片使用步长进行操作 在 Python…

SPSS两变量相关性分析

1.两变量相关性分析 两变量相关性分析是统计学中用于评估两个变量之间是否存在线性关系以及关系紧密程度的一种方法。相关性的大小通常使用相关系数来衡量&#xff0c;最常用的是皮尔逊相关系数&#xff08;Pearson correlation coefficient&#xff09;&#xff0c;但还有斯皮…

简单讲讲RISC-V跳转指令基于具体场景的实现

背景 在 RISC-V指令集中&#xff0c;一共有 6 条有条件跳转指令&#xff0c;分别是 beq、bne、blt、bltu、bge、bgeu。如下是它们的定义与接口 BEQ rs1, rs2, imm ≠ BNE rs1, rs2, imm &#xff1c; BLT rs1, rs2, imm ≥ BGE rs1, rs2, imm < unsigned BLTU rs1…

Stable Diffusion源码调试(二)

Stable Diffusion源码调试&#xff08;二&#xff09; 个人模型主页&#xff1a;https://liblib.ai/userpage/369b11c9952245e28ea8d107ed9c2746/model Stable Diffusion版本&#xff1a;https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.4.1 分析S…

汽车标定技术(五)--基于模型开发如何生成完整的A2L文件(1)

1 数据对象的创建 CtrlH打开Model Explorer&#xff0c;在Base workspace中点击工具栏add&#xff0c;出现如下界面&#xff0c; 可以看到Simulink提供了多种数据类型 Matlab Variable&#xff1a;Simulink.Parameter&#xff1a;使用该数据对象表示工程应用中的标定量Simuli…

python爬虫怎么翻页 ?

首先&#xff0c;你需要安装相关的库。在你的命令行窗口中&#xff0c;输入以下命令来安装所需的库&#xff1a; pip install requests beautifulsoup4然后&#xff0c;你可以使用以下代码来爬取网页内容并翻页&#xff1a; package mainimport ("fmt""net/htt…

DAY 12 结构体 共用体 枚举02

1.结构体 结构体对齐(了解) 概述 typedef struct Data01 { char a; int b; }Data01; typedef struct Data02 { char a; char b; }Data02; void fun01(){ printf("%ld\n",sizeof(Data01)); printf("%ld\n",sizeof(Data02)); } 特点&#xff…

QuantLib学习笔记——一个简单的价值估算案例

⭐️ 前言 QuantLib很强大&#xff0c;它实现了很多金融工具及其价值估算方法&#xff0c;从最简单的折现模型&#xff0c;到利用BSM模型对期权进行定价&#xff0c;覆盖面相当齐全。本文以一个简单的净现值估算案例&#xff0c;开启笔者金融工具估值的旅程。 开上豪车&#…

〔003〕虚幻 UE5 基础教程和蓝图入门

✨ 目录 &#x1f388; 新建项目&#x1f388; 快捷操作&#x1f388; 镜头移动速度&#x1f388; 新建蓝图关卡&#x1f388; 打印字符串&#x1f388; 蓝图的快捷键&#x1f388; 场景中放置物体&#x1f388; 通过蓝图改变物体位置&#x1f388; 展现物体运动轨迹&#x1f3…

泛微移动管理平台E-mobile lang2sql接口任意文件上传漏洞

一、漏洞描述 泛微e-mobile,由高端OA泛微专业研发,是业内领先的移动OA系统,提供移动审批,移动考勤,移动报表,企业微信等丰富办公应用,支持多种平台运行,灵活易用安全性高。 e-mobile可满足企业日常管理中的绝大部分管理需求&#xff0c; 诸如市场销售、项目、采购、研发、客服…

了解高防服务器的工作原理

在当今互联网时代&#xff0c;网络安全问题日益突出&#xff0c;各种网络攻击层出不穷。为了保护企业的网络安全&#xff0c;高防服务器应运而生。那么&#xff0c;你是否了解高防服务器的工作原理呢?下面就让我们一起来探索一下。 高防服务器是一种能够有效抵御各种网络攻击的…

“小众”与“竞争”:打造爆款新能源车型的两大方法

引言&#xff1a;在动荡的新能源汽车市场中,品牌如何从众多竞争者中脱颖而出,捕捉消费者的心呢?是否是从广袤的"主流"市场着手,还是从具有潜力的”小众"市场切入?或者,是否需要重新定义与既定的竞争者进行正面对抗的方式? 在新能源汽车翻涌的市场潮流中&…

利用浩客无代码开发API集成客服系统,提升用户服务质量

【浩客简介】 浩客&#xff0c;是由十年 SaaS 表单产品「金数据」团队打造的新产品。它主要面向数字化系统的用户评价、反馈、调研、通知工具&#xff0c;特定时机、精准触达&#xff0c;帮助产品经理、用研、UX、运营&#xff0c;聆听用户心声&#xff0c;增强用户触达&#…