【电路笔记】-谐波

news2024/12/23 15:59:54

谐波

文章目录

  • 谐波
    • 1、概述
    • 2、频谱分析
    • 3、已知信号
    • 4、未知信号
    • 5、总结

周期性信号并不总是完美的正弦模式,例如我们之前有关 正弦波的文章之一中介绍的那样。 有时,信号确实可以是简单正弦波的叠加,它们被称为复杂波形。

在本文中,我们将重点关注复杂的周期性波形,以了解它们的组成以及如何分析它们。

首先,我们介绍谐波的概念以及频谱表示。 在第二部分中,我们重点关注谱分析,这是基于傅立叶级数的分析谐波的数学工具。

1、概述

假设一个周期信号 s ( t ) s(t) s(t),它是两个称为谐波 y 0 ( t ) y_0(t) y0(t) y 1 ( t ) y_1(t) y1(t) 的正弦波形的叠加,它们的频率和幅度满足 ω 1 = 2 ω 0 \omega_1=2\omega_0 ω1=2ω0 A 0 = 2 A 1 A_0=2A_1 A0=2A1。 因此,它们的表达式由 y 0 ( t ) = A 0 sin ⁡ ( ω 0 t ) y_0(t)=A_0\sin(\omega_0t) y0(t)=A0sin(ω0t) y 1 ( t ) = A 1 sin ⁡ ( ω 1 t ) y_1(t)=A_1\sin(\omega_1t) y1(t)=A1sin(ω1t) 给出。 图 1 显示了与结果信号 s ( t ) s(t) s(t) 分开的谐波 y 0 ( t ) y_0(t) y0(t) y 1 ( t ) y_1(t) y1(t)

在这里插入图片描述

图1:复杂波形及其谐波的表示

在此示例中, y 0 ( t ) y_0(t) y0(t) 称为基波, y 1 ( t ) y_1(t) y1(t) 称为一次谐波。 基波谐波是频率较低的信号,它给出了结果信号 s ( t ) s(t) s(t) 的周期性:我们确实可以看到 ω 0 = ω S ω_0=ω_S ω0=ωS

因此,谐波是复杂波形的“构建”函数,但是,它们的频率不是随机的,并且始终满足 ω 0 = ω S ω_0=ω_S ω0=ωS ω 1 = 2 ω 0 ω_1=2ω_0 ω1=2ω0 ω 2 = 3 ω 0 ω_2=3ω_0 ω2=3ω0(如果存在二次谐波)等等……在一般情况下, 第n次谐波的频率满足关系式 ω n = ( n + 1 ) × ω 0 ω_n=(n+1)\times ω_0 ωn=(n+1)×ω0

当给定特定的复杂波形时,一种非常合适的表示形式称为信号的频谱。 这种表示方法包括绘制每个谐波的幅度作为频率的函数,并且可以通过 Python 或 MatLab 等数值程序进行计算:

在这里插入图片描述

图2:s(t)的频谱

检查 s ( t ) s(t) s(t) 的频谱,可以清楚地看到基波信号的频率为 f 0 = 15 / 2 π = 2.4 H z f_0=15/2\pi=2.4Hz f0=15/2π=2.4Hz,幅度 A 0 = 1 A_0=1 A0=1(例如 V V V A A A),而一次谐波的频率为 2 f 0 = 4.8 H z 2f_0=4.8Hz 2f0=4.8Hz,振幅 A 1 = 0.5 A_1=0.5 A1=0.5

2、频谱分析

绘制如图 2 所示的频谱是基于称为傅立叶级数的数学工具。 这种方法是在19世纪初期由法国科学家约瑟夫·傅立叶提出的,至今仍然是信号分析的主要工具之一。

该方法基于这样的观察:任何周期信号 y ( t ) y(t) y(t) 实际上都是可以计算幅度和相位的谐波的无限和(一系列)。 同样的观察可以写成一个数学方程:

在这里插入图片描述

等式1:将周期信号分解为傅立叶级数

复指数项只是写谐波的复数形式(请参阅复数这篇文章)。 整数n指的是第n次谐波,T是 y ( t ) y(t) y(t)的周期。

系数 c n ( y ) c_n(y) cn(y) 称为函数 y ( t ) y(t) y(t)的傅里叶系数,由以下关系确定:

在这里插入图片描述

等式2:傅里叶系数

通常将系数 c n c_n cn 分为两个系数 a n a_n an b n b_n bn,对于实函数,这两个系数由下式给出:

在这里插入图片描述

等式3:实函数的简化傅立叶系数

这种确定任何周期信号的傅里叶分解的方法,因此给出如图 2 所示的频谱,也称为傅里叶变换 (FT),它是针对非周期信号的相同方法的扩展。

需要分别考虑两种情况才能进行周期信号的 FT,并在以下小节中进行解释。

3、已知信号

第一种情况是要分解的信号是否具有已知的解析表达式。 例如,考虑周期性为 T 的方波信号 s q ( t ) sq(t) sq(t)。其表达式通过以下定义可知:

在这里插入图片描述

图 3 表示几个周期内周期 T = 2 π T=2\pi T=2π 的方波信号:

在这里插入图片描述

图3:方波信号示意图

首先,我们确定项 a 0 a_0 a0 的表达式:

在这里插入图片描述
该系数表示信号的平均值: y ( t ) y(t) y(t),并且在一半的时间内确实等于 1,否则等于 0。 请注意,由于 sin ⁡ ( 0 ) = 0 \sin(0)=0 sin(0)=0,因此项 b 0 b_0 b0 等于 0。

当开发 n > 0 n>0 n>0 a n a_n an 表达式时,我们意识到这些系数与在 0 和 π \pi π 之间计算的 sin ⁡ ( n x ) \sin(nx) sin(nx) 成正比,它始终等于 0,因此 ( a n ) n > 0 = 0 (a_n)_{n>0}=0 (an)n>0=0

最后,我们确定 n > 0 n>0 n>0 时系数 b n b_n bn 的一般表达式:

在这里插入图片描述
当在 0 和 π \pi π 之间求值时,如果 n 为奇数,则 cos ⁡ ( n x ) \cos(nx) cos(nx) 项等于 -2;如果 n 为偶数,则 cos ⁡ ( n x ) \cos(nx) cos(nx)等于 0。 ( b n ) n > 0 (b_n)_{n>0} (bn)n>0 的最终表达式由下式给出:

在这里插入图片描述
每个系数 b n b_n bn 对应于谐波 sin ⁡ ( n t ) \sin(nt) sin(nt) 的幅度。 因此,根据 a 0 a_0 a0 b n b_n bn 的表达式,我们可以给出方波信号 s q ( t ) sq(t) sq(t) 的完整傅里叶展开:

在这里插入图片描述

等式:周期2π方波信号的傅立叶展开

根据等式4,我们可以绘制 s q ( t ) sq(t) sq(t) 的频谱的一部分,如下图 4 所示:

在这里插入图片描述

图4:方波信号的频谱 sq(t)

对于该信号,仅存在奇次谐波,其幅度由 2 / n π 2/n\pi 2/ 给出,频率由 n / 2 π n/2\pi n/2π 给出。 请注意,平均值也出现在 0Hz 频率的频谱中。 由于方波信号呈现无限数量的谐波,因此频谱当然仅显示到特定频率。

例如,当使用函数发生器生成方波信号时,仅采用有限数量的谐波来构建波形。 例如,如果我们使用谐波 1、2、3、4 和 5,我们称信号是使用直到五阶的谐波生成的,阶数给出了形状的准确度:

在这里插入图片描述

图5:使用谐波分解对方波信号进行两种近似图

当近似阶数增加时,我们可以查明在不连续性跳跃周围出现过冲(信号从 0 到 1 或从 1 到 0 残酷地交替)。 这被称为吉布斯现象(Gibbs Phenomenon),并且出现在存在不连续跳跃的每个信号中。

4、未知信号

让我们重新考虑演示部分中给出的示例,并解释数值程序如何确定 s ( t ) s(t) s(t)的傅立叶分解。 在图 1 中,我们可以测量 s ( t ) s(t) s(t) 的周期性为 T = 0.42 s T=0.42s T=0.42s

第一个系数 c 0 ( y ) c_0(y) c0(y)很容易确定,在我们的示例中等于 0,因为围绕水平轴对称的周期信号在一个周期内的积分始终等于 0。实际上,该第一个系数始终与 直流量,因此是平均值,这在我们的例子中不存在。

当函数 s ( t ) s(t) s(t)的表达式已知时,可以分析计算系数 c n c_n cn,如上一小节所示。 然而,对于未知函数 s ( t ) , n > 0 s(t),n>0 s(t)n>0时的系数 a n ( y ) an(y) an(y) b n ( y ) bn(y) bn(y) 通过计算 − T / 2 -T/2 T/2 T / 2 T/2 T/2(或 0 和 T T T)之间的面积来数值确定 函数 s ( t ) cos ⁡ ( 2 π n t / T ) s(t)\cos(2\pi nt/T) s(t)cos(2πnt/T) s ( t ) sin ⁡ ( 2 π n t / T ) s(t)\sin(2\pi nt/T) s(t)sin(2πnt/T)的曲线。

这可以通过多种方法来完成,最容易实现和理解的方法之一是矩形方法,其思想如图 6 中的函数 s ( t ) sin ⁡ ( 2 π t / T ) s(t)\sin(2\pi t/T) s(t)sin(2πt/T)所示:

在这里插入图片描述

图6:矩形法图解

如图 5 所示,该方法包括通过对宽度为 d t dt dt 和高度为 y ( n × d t ) y(n\times dt) y(n×dt)的小矩形面积求和来近似曲线的积分,其中 n n n是所考虑矩形的索引。

信号 y ( t ) y(t) y(t)的周期T被细分为 N N N个矩形,例如 N × d t = T N\times dt=T N×dt=T。 当 d t dt dt 足够小时,矩形面积之和约等于 y ( t ) y(t) y(t)在一段时间内的积分:

在这里插入图片描述

值得一提的是,为了更好地收敛到精确结果,存在更精确的方法,例如通过选择矩形以外的其他形状来更准确地遵循曲线。

5、总结

  • 如本文第一部分所述,谐波是形成任何周期信号的基本正弦波形。 一些复杂波形可以具有有限数量的谐波,而其他波形则具有无限数量,例如本文后面介绍的方波信号。
  • 谐波的频率始终是复信号基频的整数倍。 它们的幅度通常向高频方向减小,并且可以通过傅里叶分解来确定。
  • 频谱表示是突出显示信号谐波的最方便的方法,它是通过第二部分中介绍的傅里叶分解来计算的。 如果复杂波形的表达式已知,则分解可以是解析的;如果信号未知,则分解可以是数值的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1174422.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第一章 introduction to software testing

文章目录 基本概念validation / verificationinput domain / output domaindeterministic / non-deterministicterminate / not-terminate Testing概念testing 的目的Fault, failure, error测试三要素 (3 essential pieces of information)测试输入预期输出执行测试 test execu…

AI写作神器,轻松搞定职场公文写作!

在当今数字化时代,人工智能技术的快速发展为各行各业带来了许多便利,因为AI写作的普及,使许多职场人士能够更加快速地撰写出高质量的公文,作为一家引领智能AI写作潮流的在线平台,boardmix博思白板以其独特的优势在这个…

D-Link账号密码泄露

构造payload: /getcfg.php SERVICESDEVICE.ACCOUNT&attackture%0D%0AAUTHORIZED_GROUP%3D1漏洞证明: 文笔生疏,措辞浅薄,望各位大佬不吝赐教,万分感谢。 免责声明:由于传播或利用此文所提供的信息、技…

CCF-CSP真题《202305-4 电力网络》思路+python,c++满分题解

想查看其他题的真题及题解的同学可以前往查看:CCF-CSP真题附题解大全 试题编号:202305-4试题名称:电力网络时间限制:1.0s内存限制:512.0MB问题描述: 问题描述 西西艾弗岛电力公司需要修建一套电网对岛上的众…

贝叶斯网络:利用变量消除(Variable Elimination)进行推理

贝叶斯网络简介 贝叶斯网络(Bayesian network)也叫贝氏网路、信念网络(belief network)或是有向无环图(DAG)模型,是一种概率图模型。它利用DAG的结构,得到一组随机变量{X1,X2,...,Xn}的条件概率分布&#…

Java中的static

目录 static修饰成员变量 静态成员变量特征 static修饰成员方法 【静态方法特性】 static成员变量初始化 就地初始化 静态代码块初始化 注意事项 static修饰成员变量 静态成员变量特征 static修饰的成员变量,称为静态成员变量,静态成员变量最大的…

matplotlib从起点出发(10)_Tutorial_10_Layout

使用受约束的绘图干净整洁地将图形合适排列。 受约束的布局会自动调整子图,以便刻度标签、图例和颜色条等装饰不会重叠,同时仍保留用户请求的逻辑布局。 受约束布局类似于“紧密布局”,但它要更灵活。它处理放置在多个轴上的Axes(放置颜色条…

python 命令行界面的用户交互

背景 说一千,道一万,程序是为用户服务的,所以在程序运行过程,与用户交互以获取用户的信息输入和决策确认,是无法避免的编程需要考虑和解决的需求。 一个简单的demo 如下的程序中,程序需要生成一个新的 i…

图片批量归类:告别混乱,实现高效文件管理

在日常生活中,我们经常需要处理大量的图片文件。这些图片可能来自于不同的设备、不同的目录,甚至不同的存储介质。随着时间的推移,这些图片文件会越来越多,管理起来也会越来越困难。如何高效地整理这些图片文件,告别混…

初步利用Ansible实现批量服务器自动化管理

1.Ansible介绍 Ansible是一款开源的自动化运维工具, 在2012年由Michael DeHaan创建, 现在由Red Hat维护。Ansible是基于Python开发的,采用YAML语言编写自动化脚本playbook, 可以在Linux、Unix等系统上运行, 通过SSH协议管理节点, 无需在被管理节点安装agent。Ansible以其简单、…

MySQL 数据库安全性练习题

数据库安全性 一、实验目的 (1)熟悉通过MySQL对数据进行安全性控制 二、实验环境 Windows 11 MySQL Navicat 三、实验内容 今有以下两个关系模式: 职工(职工号,姓名,年龄,职务,工…

11.3递归建二叉树,二叉树函数规范化输入输出,一些二叉树性质,求叶子结点与树的高度

建树 ,递归建树 输入为 建立树 递归 函数参数表为引用或指针 void Creat(BiTree *T){char ch;scanf("%c",&ch);if(ch#){*TNULL;}else{*T(BiTree)malloc(sizeof(BiTNode));(*T)->datach;Creat(&(*T)->nextleft);Creat(&(*T)->nex…

标签识别中的数据泄露:关键分析

一、介绍 在数据驱动的决策时代,收集、处理和分析数据的过程在从医疗保健到金融,从营销到研究的各个领域都发挥着举足轻重的作用。数据分析的基本步骤之一是正确识别数据集中的标签或类别。然而,这项看似简单的任务可能充满挑战,尤…

springboot苍穹外卖实战:八、开发小程序准备工作+入门案例+小程序微信用户登录流程+商品浏览

开发小程序准备工作 官方网址:https://mp.weixin.qq.com/cgi-bin/wx?token&langzh_CN 1、微信小程序注册 注册地址:https://mp.weixin.qq.com/wxopen/waregister?actionstep1 2、 完善小程序信息 登录小程序后台:https://mp.weixin.…

前端框架Vue学习 ——(三)Vue生命周期

生命周期:指一个对象从创建到销毁的整个过程。 生命周期的八个阶段:每触发一个生命周期事件,会自动执行一个生命周期方法(钩子) mounted:挂载完成,Vue 初始化成功,HTML 页面渲染成功…

Linux学习第33天:Linux INPUT 子系统实验(二):Linux 自带按键驱动程序的使用

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 本节笔记主要内容是学会如何使用Linux自带的按键驱动程序。 一、自带按键驱动程序源码简析 配置选项路径如下: -> Device Drivers ->…

内存学习(3):DRAM的基础存储结构(存储层级、读写过程,刷新与暂存)

1 DRAM背景简介 DRAM,全称为 Dynamic Random Access Memory ,中文名是“动态随机存取存储器”。所谓“动态”是和“静态”相对应的,芯片世界里还有一种 SRAM 静态随机存取存储器的存在。 笼统地说,DRAM 的结构比 SRAM 更简单&am…

UE5——源码阅读——2

这个是非常大的作用域,当程序离开这个东西,就会把它释放掉,设置了一个作用域把当前线程标记为主线程 插入了一个默认的Main,这个东西其实是标记点,这个标记是在UE内部有个性能分析工具可以看到这个标记点,主要是确定位…

【java学习—十三】处理流之三:标准输入输出流(3)

文章目录 1. 相关概念2. 举例与练习2.1. 举例2.2. 练习 1. 相关概念 System.in 和 System.out 分别代表了系统标准的输入和输出设备,默认输入设备是键盘,输出设备是显示器。     System.in 的类型是 InputStream     System.out 的类型是 PrintS…

SpringMvc从菜鸟到大拿完成蜕变

SpringMvc从菜鸟到大拿完成蜕 介绍 Why springmvc Servlet缺点: servlet中的service:方法一次只能处理一类请求;单拿用户表来说,得需要创建五个Servlet;在url中输入的是urlpattern;默认只访问service方法;如何减少Servlet的个数呢? 增加了一个method参数;其他人有可能会喜欢…