基于卷尾猴算法的无人机航迹规划-附代码

news2025/1/9 2:10:31

基于卷尾猴算法的无人机航迹规划

文章目录

  • 基于卷尾猴算法的无人机航迹规划
    • 1.卷尾猴搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用卷尾猴算法来优化无人机航迹规划。

1.卷尾猴搜索算法

卷尾猴算法原理请参考:https://blog.csdn.net/u011835903/article/details/123328669

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得卷尾猴搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用卷尾猴算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,卷尾猴算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1173833.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++入门学习(1)命名空间和输入输出

前言 在C语言和基本的数据结构学习之后,我们终于迎来了期待已久的C啦!C发明出来的意义就是填补一些C语言的不足,让我们更加方便的写代码,所以今天我们就来讲一下C语言不足的地方和在C中的解决办法! 一、命名空间 在学习…

云产品 FC 免费试用获取奖励完整步骤

文章目录 步骤 1:获取活动链接步骤 2:报名参加步骤 3:试用产品步骤 4:部署步骤 5:访问应用步骤 6:生成小说步骤 7:提交作品步骤 8:提交任务获取奖励 🎉云产品 FC 免费试用…

动态规划(Dynamic Programming)—— Java解释

一、基本思想 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,并将子问题的求解结果存储起来避免重复求解,从而一步步获取最优解的处理算法。 动态规划算法与分治算法类似,其基本思想也是将待求解…

【Solidity】Solidity中的基本数据类型和复合数据类型

1. 基本数据类型 1.1 整数类型 Solidity支持有符号整数和无符号整数,可以指定位数和范围。以下是一些整数类型的示例: int:有符号整数,可以是正数或负数。2,-45,2023 uint:无符号整数&#x…

系统提示缺少或找不到d3dcompiler_43.dll文件的详细修复教程

今天我来给大家分享一下关于d3dcompiler_43.dll缺失的4个修复方法。 首先,我们来了解一下d3dcompiler_43.dll的作用。它是DirectX中的一个组件,用于编译Shader和Pixel着色器代码。如果缺少了这个文件,就会导致游戏或应用程序无法正常运行。 …

操作系统复习(2)进程管理

一、概述 1.1程序的顺序执行 一个具有独立功能的程序独占CPU运行,直至得到最终结果的过程称为程序的顺序执行。 程序的并发执行所表现出的特性说明两个问题 ⑴ 程序和计算机执行程序的活动不再一一对应 ⑵ 并发程序间存在相互制约关系(要求共享信息&…

Docker容器中执行throttle.sh显示权限报错:RTNETLINK answers: Operation not permitted

在模拟通信环境时,我执行了一下命令: bash ./throttle.sh wan但是,出现了权限的报错:RTNETLINK answers: Operation not permitted 解决方案说简单也挺简单,只需要两步完成。但是其实又蛮繁琐,因为需要将…

伪随机序列——m序列及MATLAB仿真

文章目录 前言一、m 序列1、m 序列的产生2、m 序列的性质①、均衡性②、游程分布③、移位相加特性④、自相关函数⑤、功率谱密度⑥、伪噪声特性 二、M 序列1、m 序列的产生2、m 序列的性质 三、MATLAB 中 m 序列1、m 序列生成函数的 MATLAB 代码2、MATLAB 仿真 前言 在通信系统…

15 _ 二分查找(上):如何用最省内存的方式实现快速查找功能?

今天我们讲一种针对有序数据集合的查找算法:二分查找(Binary Search)算法,也叫折半查找算法。二分查找的思想非常简单,很多非计算机专业的同学很容易就能理解,但是看似越简单的东西往往越难掌握好,想要灵活应用就更加困难。 老规矩,我们还是来看一道思考题。 假设我们…

【Android】Android Framework系列---CarPower深度睡眠STR

Android Framework系列—CarPower深度睡眠 之前博客的说说CarPower的开机启动流程 这里分析一下,Android CarPower实现深度睡眠的流程。 首先,什么是深度睡眠(Deep Sleep)? Android进入Deep Sleep后,关闭屏幕、关闭CPU的电源,保…

【Head First 设计模式】-- 观察者模式

背景 客户有一个WeatherData对象,负责追踪温度、湿度和气压等数据。现在客户给我们提了个需求,让我们利用WeatherData对象取得数据,并更新三个布告板:目前状况、气象统计和天气预报。 WeatherData对象提供了4个接口: …

【0基础学Java第七课】-- 类和对象01

7. 类和对象 7.1 面向对象的初步认知7.1.1 什么是面向对象7.1.2 面向对象与面向过程 7.2 类定义和使用7.2.1 简单认识类7.2.2 类的定义格式7.2.3 定义一个狗类7.2.4 定义一个学生类 7.3 类的实例化7.3.1 什么是实列化7.3.2 引用只能指向对象,且不能同时指向多个对象…

C#使用随机数模拟英雄联盟S13瑞士轮比赛

瑞士轮赛制的由来 瑞士制:又称积分循环制,最早出现于1895年在瑞士苏黎世举办的国际象棋比赛中,故而得名。其基本原则是避免种子选手一开始就交锋、拼掉,是比较科学合理、用得最多的一种赛制;英语名称为Swiss System。…

微信内H5页面唤醒App

首先,简述一下这个需求的背景,产品希望能够让用户在微信内,打开一个h5页面,然后就能唤醒公司中维护的app,这个是为了能够更好的引流。 唤醒app的三种方案 IOS系统-Universal Link(通用链接) …

invoke方法传参String数组问题——wrong number of arguments

invoke方法传参String数组问题——wrong number of arguments 问题描述一、案例准备二、错误反射调用实例三、正确反射调用实例 问题描述 今天笔者在使用invoke方法的时候,发现报了一个这样一个错:“wrong number of arguments”,在网上冲浪…

【Python】-- python的基本图像处理(图像显示、保存、颜色变换、缩放与旋转等)

目录 一、图像文件的读写 操作步骤: 显示图像文件的三个常用属性: 例: 二、图像文件的处理 常用的图像处理方法 1、图像的显示 2、图像的保存 3、图像的拷贝与粘贴 4、图像的缩放与旋转 5、图像的颜色变换 6、图像的过滤与增强 7、序…

【MySQL】用户管理权限控制

文章目录 前言一. 用户管理1. 创建用户2. 删除用户3. 修改用户密码 二. 权限控制1. 用户授权2. 查看权限3. 回收权限 结束语 前言 MySQL的数据其实也以文件形式保存,而登录信息同样保存在文件中 MySQL的数据在Linux下默认路径是/var/lib/mysql 登录MySQL同样也可以…

全网超细,Pytest自动化测试框架入门到精通-实战整理,一篇打通...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、Pytest和Unitt…

交叉编译程序:以 freetype 为例

1 程序运行的一些基础知识 1.1 编译程序时去哪找头文件? 系统目录:就是交叉编译工具链里的某个 include 目录;也可以自己指定:编译时用 “ -I dir ” 选项指定。 1.2 链接时去哪找库文件? 系统目录&#…

二叉树OJ练习题(C语言版)

目录 一、相同的树 二、单值二叉树 三、对称二叉树 四、树的遍历 前序遍历 中序遍历 后序遍历 五、另一颗树的子树 六、二叉树的遍历 七、翻转二叉树 八、平衡二叉树 一、相同的树 链接:100. 相同的树 - 力扣(LeetCode) bool isSameTree(…