Pytroch_Sequential使用、损失函数、反向传播和优化器

news2025/1/10 21:15:43

Pytroch_Sequential使用、损失函数、反向传播和优化器

文章目录

    • nn.Sequential
    • 搭建小实战
    • 损失函数与反向传播
    • 优化器

nn.Sequential

nn.Sequential是一个有序的容器,用于搭建神经网络的模块被按照被传入构造器的顺序添加到nn.Sequential()容器中。

在这里插入图片描述

在这里插入图片描述

import torch.nn  as nn
from collections import OrderedDict
# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))
print(model)
Sequential(
  (conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
  (relu1): ReLU()
  (conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
  (relu2): ReLU()
)

搭建小实战

还是以 C I F A R − 10 m o d e l CIFAR-10 model CIFAR10model为例

在这里插入图片描述

  1. 输入图像是3通道的32×32的
  2. 先后经过卷积层(5×5的卷积核)
  3. 最大池化层(2×2的池化核)
  4. 卷积层(5×5的卷积核)
  5. 最大池化层(2×2的池化核)
  6. 卷积层(5×5的卷积核)
  7. 最大池化层(2×2的池化核)
  8. 拉直(flatten)
  9. 全连接层的处理,
  10. 最后输出的大小为10

基于以上的介绍,后续将利用Pytorch构建模型,实现 C I F A R − 10 m o d e l s t r u c t u r e CIFAR-10 \quad model \quad structure CIFAR10modelstructure

参数说明:in_channels: int、out_channels: int,kernel_size: Union由input、特征图以及卷积核即可看出,而stride、padding需要通过公式计算得到。

特得到的具体的特征图尺寸的计算公式如下:
在这里插入图片描述

inputs : 3@32x32,3通道32x32的图片,5*5的kernel --> 特征图(Feature maps) : 32@32x32

即经过32个3@5x5的卷积层,输出尺寸没有变化(有x个卷积核即由x个卷积核,卷积核的通道数与输入的通道数相等)

由上述的计算公式来计算出 s t r i d e stride stride p a d d i n g padding padding

在这里插入图片描述

卷积层中的stride默认为1

池化层中的stride默认为kernel_size的大小

import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class BS(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3,
                               out_channels=32,
                               kernel_size=5,
                               stride=1,
                               padding=2)  #stride和padding计算得到
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)
        self.conv2 = nn.Conv2d(in_channels=32,
                               out_channels=32,
                               kernel_size=5,
                               stride=1,
                               padding=2)
        self.maxpool2 = nn.MaxPool2d(kernel_size=2)
        self.conv3 = nn.Conv2d(in_channels=32,
                               out_channels=64,
                               kernel_size=5,
                               padding=2)
        self.maxpool3 = nn.MaxPool2d(kernel_size=2)
        self.flatten = nn.Flatten()  #变为63*4*4=1024
        self.linear1 = nn.Linear(in_features=1024, out_features=64)
        self.linear2 = nn.Linear(in_features=64, out_features=10)
        
        
    def forward(self,x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x
    
bs = BS()
bs
BS(
  (conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear1): Linear(in_features=1024, out_features=64, bias=True)
  (linear2): Linear(in_features=64, out_features=10, bias=True)
)

利用Sequential优化代码,并在tensorboard显示

.add_graph函数用于将PyTorch模型图添加到TensorBoard中。通过这个函数,您可以以可视化的方式展示模型的计算图,使其他人更容易理解您的模型结构和工作流程。

add_graph(model, input_to_model, strip_default_attributes=True)
  • model:要添加的PyTorch模型。
  • input_to_model:用于生成模型图的输入数据。
  • strip_default_attributes:是否删除模型中的默认属性,默认为True。
class BS(nn.Module):

    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3,
                               out_channels=32,
                               kernel_size=5,
                               stride=1,
                               padding=2),  #stride和padding计算得到
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                                   out_channels=32,
                                   kernel_size=5,
                                   stride=1,
                                   padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                                   out_channels=64,
                                   kernel_size=5,
                                   padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Flatten(),  #变为64*4*4=1024
            nn.Linear(in_features=1024, out_features=64),
            nn.Linear(in_features=64, out_features=10),
        )
    
    def forward(self,x):
        x = self.model(x)
        return x
    
bs = BS()
print(bs)
BS(
  (model): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
# 在tensorboard中显示
input_ = torch.ones((64,3,32,32))
writer = SummaryWriter(".logs")
writer.add_graph(bs, input_)  # 定义的模型,数据
writer.close()

利用tensorboard可视化网络结构graph如下
在这里插入图片描述

损失函数与反向传播

计算模型目标输出和实际输出之间的误差。并通过反向传播算法更新模型的权重和参数,以减小预测输出和实际输出之间的误差。

  • 计算实际输出和目标输出之间的差距
  • 为更新输出提供一定依据(反向传播)

不同的模型用的损失函数一般也不一样。
在这里插入图片描述

平均绝对误差MAE Mean Absolute Error

torch.nn.L1Loss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch
import torch.nn as nn
# 实例化
criterion1 = nn.L1Loss(reduction='mean')#mean
criterion2 = nn.L1Loss(reduction="sum")#sum
output = torch.tensor([1.0, 2.0, 3.0])#或dtype=torch.float32
target = torch.tensor([2.0, 2.0, 2.0])#或dtype=torch.float32
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(0.6667)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(2.)
tensor(0.6667)
tensor(2.)
loss = nn.L1Loss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()
output
tensor(1.0721, grad_fn=<MeanBackward0>)

均方误差MSE Mean-Square Error
在这里插入图片描述

torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch.nn as nn
# 实例化
criterion1 = nn.MSELoss(reduction='mean')
criterion2 = nn.MSELoss(reduction="sum")
output = torch.tensor([1, 2, 3],dtype=torch.float32)
target = torch.tensor([1, 2, 5],dtype=torch.float32)
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(1.3333)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(4.)
tensor(1.3333)
tensor(4.)

交叉熵损失 CrossEntropyLoss

torch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean',label_smoothing=0.0)

当你有一个不平衡的训练集时,这是特别有用的
在这里插入图片描述

import torch
import torch.nn as nn

# 设置三分类问题,假设是人的概率是0.1,狗的概率是0.2,猫的概率是0.3
x = torch.tensor([0.1, 0.2, 0.3])
print(x)
y = torch.tensor([1]) # 设目标标签为1,即0.2狗对应的标签,目标标签张量y
x = torch.reshape(x, (1, 3))  # tensor([[0.1000, 0.2000, 0.3000]]),批次大小为1,分类数3,即为3分类
print(x)
print(y)
# 实例化对象
loss_cross = nn.CrossEntropyLoss()
# 计算结果
result_cross = loss_cross(x, y)
print(result_cross)
tensor([0.1000, 0.2000, 0.3000])
tensor([[0.1000, 0.2000, 0.3000]])
tensor([1])
tensor(1.1019)
import torch
import torchvision
from torch.utils.data import DataLoader

# 准备数据集
dataset = torchvision.datasets.CIFAR10(root="dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 数据集加载器
dataloader = DataLoader(dataset, batch_size=1)
"""
输入图像是3通道的32×32的,
先后经过卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
拉直、
全连接层的处理,
最后输出的大小为10
"""

# 搭建神经网络
class BS(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3,
                      out_channels=32,
                      kernel_size=5,
                      stride=1,
                      padding=2),  #stride和padding计算得到
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                      out_channels=32,
                      kernel_size=5,
                      stride=1,
                      padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                      out_channels=64,
                      kernel_size=5,
                      padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Flatten(),  #变为64*4*4=1024
            nn.Linear(in_features=1024, out_features=64),
            nn.Linear(in_features=64, out_features=10),
        )

    def forward(self, x):
        x = self.model(x)
        return x


# 实例化
bs = BS()
loss = torch.nn.CrossEntropyLoss()
# 对每一张图片进行CrossEntropyLoss损失函数计算
# 使用损失函数loss计算预测结果和目标标签之间的交叉熵损失

for inputs,labels in dataloader:
    outputs = bs(inputs)
    result = loss(outputs,labels)
    print(result)


tensor(2.3497, grad_fn=<NllLossBackward0>)
tensor(2.2470, grad_fn=<NllLossBackward0>)
tensor(2.2408, grad_fn=<NllLossBackward0>)
tensor(2.2437, grad_fn=<NllLossBackward0>)
tensor(2.3121, grad_fn=<NllLossBackward0>)
........

优化器

优化器(Optimizer)是用于更新神经网络参数的工具

它根据计算得到的损失函数的梯度来调整模型的参数,以最小化损失函数并改善模型的性能

在这里插入图片描述
常见的优化器包括:SGD、Adam

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

model.parameters()用于获取模型的可学习参数

learning rate,lr表示学习率,即每次参数更新的步长

在每个训练批次中,需要执行以下操作:

  1. 输入训练数据到模型中,进行前向传播

  2. 根据损失函数计算损失

  3. 调用优化器的zero_grad()方法清零之前的梯度

  4. 调用backward()方法进行反向传播,计算梯度

  5. 调用优化器的step()方法更新模型参数

伪代码如下(运行不了的)

import torch
import torch.optim as optim

# Step 1: 定义模型
model = ...
# Step 2: 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Step 3: 定义损失函数
criterion = ...
# Step 4: 训练循环
for inputs, labels in dataloader:
    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs, labels)

    # 清零梯度
    optimizer.zero_grad()

    # 反向传播,得到梯度
    loss.backward()

    # 更新参数,根据梯度就行优化
    optimizer.step()

在上述模型代码中,SGD作为优化器,lr为0.01。同时根据具体任务选择适合的损失函数,例如torch.nn.CrossEntropyLoss、torch.nn.MSELoss等,以CIFRA10为例

import torch
import torch.optim as optim
import torchvision
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class BS(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3,
                      out_channels=32,
                      kernel_size=5,
                      stride=1,
                      padding=2),  #stride和padding计算得到
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                      out_channels=32,
                      kernel_size=5,
                      stride=1,
                      padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                      out_channels=64,
                      kernel_size=5,
                      padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Flatten(),  #变为64*4*4=1024
            nn.Linear(in_features=1024, out_features=64),
            nn.Linear(in_features=64, out_features=10),
        )

    def forward(self, x):
        x = self.model(x)
        return x


model = BS()  #定义model
optimizer = optim.SGD(model.parameters(), lr=0.01)  #定义优化器SGD
criterion = nn.CrossEntropyLoss()  #定义损失函数,交叉熵损失函数

'''循环一次,只对数据就行了一轮的学习'''
for inputs, labels in dataloader:
    # 前向传播
    outputs = model(inputs)
    # 计算损失
    loss = criterion(outputs, labels)
    # 清零梯度
    optimizer.zero_grad()
    # 反向传播
    loss.backward()
    # 更新参数
    optimizer.step()
    # 打印经过优化器后的结果
    print(loss)
    
"""训练循环20次"""
# for epoch in range(20):
#     running_loss = 0.0
#     for inputs, labels in dataloader:
#         # 前向传播
#         outputs = model(inputs)
#         # 计算损失
#         loss = criterion(outputs,labels)
#         # 清零梯度
#         optimizer.zero_grad()
#         # 反向传播
#         loss.backward()
#         # 更新参数
#         optimizer.step()
#         # 打印经过优化器后的结果
#         running_loss = running_loss + loss
#     print(running_loss)
Files already downloaded and verified
tensor(2.3942, grad_fn=<NllLossBackward0>)
tensor(2.2891, grad_fn=<NllLossBackward0>)
tensor(2.2345, grad_fn=<NllLossBackward0>)
tensor(2.2888, grad_fn=<NllLossBackward0>)
tensor(2.2786, grad_fn=<NllLossBackward0>)
........

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1173662.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AGP7.0依赖版本管理version catalogs使用

AGP7.0依赖版本管理 version catalogs使用 概念 version catalogs是AGP7.0之后推出的一种依赖版本管理的方式&#xff1b; 好处 对所有module可见&#xff0c;可统一管理所有module的依赖支持声明依赖bundles,组合打包依赖减少重复代码支持在单独的libs.versions.toml文件中…

Day43 力扣动态规划 :309.最佳买卖股票时机含冷冻期|714.买卖股票的最佳时机含手续费 |股票总结

Day43 力扣动态规划 :309.最佳买卖股票时机含冷冻期&#xff5c;714.买卖股票的最佳时机含手续费 &#xff5c;股票总结 309.最佳买卖股票时机含冷冻期第一印象看完题解的思路dp数组递推公式初始化遍历顺序 实现中的困难感悟代码 714.买卖股票的最佳时机含手续费第一印象看完题…

OpenCV实现手势音量控制

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 今天来学习一下如何使用OpenCV实现手势音量控制&#xff0c;欢迎大家一起前来探讨学习~ 一、需要的库及功能介绍 本次实验需要使用OpenCV和mediapipe库进行手势识别&#xff0c;并利用手势距离控制电脑音量。 导入库&am…

“轻松管理收支明细,随时筛选借款信息,财务清晰无忧“

作为现代人&#xff0c;我们每天都在与金钱打交道。无论是个人还是企业&#xff0c;都需要对收支情况进行详细的管理和分析。然而&#xff0c;繁琐的财务数据往往让人头疼。现在&#xff0c;我们为您推荐一款强大的财务管理工具&#xff0c;让您轻松管理收支明细&#xff0c;随…

17. 机器学习 - 随机森林

Hi&#xff0c;你好。我是茶桁。 我们之前那一节课讲了决策树&#xff0c;说了决策树的优点&#xff0c;也说了其缺点。 决策树实现起来比较简单&#xff0c;解释解释性也比较强。但是它唯一的问题就是不能拟合比较复杂的关系。 后来人们为了解决这个问题&#xff0c;让其能…

Android - 编译 openssl 踩坑之路

一、简述 如果你想快速在项目中使用上 openssl,可以使用网上其他开发者提供好的预编译库: OpenSSL(All):https://builds.viaduck.org/prebuilts/openssl/OpenSSL(3.1.*) :https://github.com/217heidai/openssl_for_android以上的预编译库可能最低只支持 API 21(即 Andro…

SpringCloud-Alibaba之OSS对象存储服务

阿里云的 OSS 服务进行云端的文件存储 用户认证需要上传图片、首页轮播需要上传图片&#xff0c;OSS分布式文件服务系统可以提供服务。 一、依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>aliyun-oss-spring-boot-starter</…

【Linux】第十一站:冯诺依曼与操作系统

文章目录 一、冯诺依曼体系结构&#xff08;硬件层面&#xff09;1.冯诺依曼体系结构2.数据流向3.总结 二、操作系统1.概念2.设计操作系统的目的3.定位4.如何管理5.系统调用和库函数概念 一、冯诺依曼体系结构&#xff08;硬件层面&#xff09; 1.冯诺依曼体系结构 我们常见的…

C语言--一个球从100m高度自由落下,每次落地后反弹回原高度的一半,再落下,再反弹。求它在第10次落地时共经过多少米,第10次反弹多高

一.思路分析 这是一个简单的物理题目&#xff0c;解题思路比较明确。程序使用 for 循环来模拟球的下落和反弹过程&#xff0c;通过多次计算得到最终结果&#xff0c;最后使用 printf 函数将结果输出。 定义初始高度 height 和总共经过的米数 distance 的变量&#xff0c;初始化…

ICP学习记录

1. 流程图 ICP&#xff08;一&#xff09;原理详解_icp原理-CSDN博客 ICP算法详解——我见过最清晰的解释-CSDN博客 ICP算法理解-CSDN博客 ICP知识点梳理笔记_icp非凸_KalutSirocco的博客-CSDN博客 【精选】【图像配准】点云配准ICP算法介绍&#xff1a;基础流程、ICP算法…

游戏开发中的“御用中介“

点击上方亿元程序员关注和★星标 引言 大家好&#xff0c;我是亿元程序员&#xff0c;一位有着8年游戏行业经验的主程。 本系列是《和8年游戏主程一起学习设计模式》&#xff0c;让糟糕的代码在潜移默化中升华&#xff0c;欢迎大家关注分享收藏订阅。 游戏开发中的"御用…

【SpringSecurity】简介

SpringSecurity简介 Spring Security 的前身是Acegi Security&#xff0c;在被收纳为Spring 子项目后正式更名为Spring Security。Spring Security目前已经到了6.x&#xff0c;并且加入了原生OAuth2.0框架&#xff0c;支持更加现代化的密码加密方式。可以预见&#xff0c;在Ja…

ElasticSearch高级功能详解与原理剖析

ES数据预处理 Ingest Node Elasticsearch 5.0后&#xff0c;引入的一种新的节点类型。默认配置下&#xff0c;每个节点都是Ingest Node&#xff1a; 具有预处理数据的能力&#xff0c;可拦截lndex或Bulk API的请求对数据进行转换&#xff0c;并重新返回给Index或Bulk APl 无…

React实现一个拖拽排序组件 - 支持多行多列、支持TypeScript、支持Flip动画、可自定义拖拽区域

一、效果展示 排序&#xff1a; 丝滑的Flip动画 自定义列数 &#xff08;并且宽度会随着屏幕宽度自适应&#xff09; 自定义拖拽区域&#xff1a;&#xff08;扩展性高&#xff0c;可以全部可拖拽、自定义拖拽图标&#xff09; 二、主要思路 Tip&#xff1a; 本代码的CSS使用…

Ubuntu22.04下挂载共享文件夹

1.在自己Windows任意地方建一个文件夹 2.打开虚拟机做如下配置 3.开启虚拟机&#xff0c;打开终端 4.输入&#xff1a;vmware-hgfsclient 看到物理机共享文件夹 5.输入&#xff1a;sudo mkdir /mnt/hgfs 创建虚拟机中的共享文件夹 6.输入&#xff1a;sudo vmhgfs-fuse .h…

Android---App 的安装过程

Android 系统中两个比较重要的服务 ActivityManagerService(AMS) 和 WindowManagerService(WMS)&#xff0c;这篇文章中通过分析 apk 的安装过程&#xff0c;来了解 Android 中另一个比较重要的系统服务 -- PackageManagerService(PMS)。 编译阶段 在分析安装过程之前&#x…

项目实战:service业务逻辑组件引入

1、第一层DAO层 1.1、FruitDao接口 package com.csdn.fruit.dao; import com.csdn.fruit.pojo.Fruit; import java.util.List; //dao &#xff1a;Data Access Object 数据访问对象 //接口设计 public interface FruitDao {void addFruit(Fruit fruit);void delFruit(String fn…

Java--类和对象

目录 面向对象一.类1.类的创建默认初始化2.类的实例化3.注意事项利用类的创建来交换值 二.this1.使用this2.可使用this来调用其他构造方法来简化 三.构造方法3.1概念3.2特性3.3不带参数的构造方法3.4带参数的构造方法当使用自定义的构造方法后&#xff0c;再删除时&#xff0c;…

【Linux系统编程】系统用户和权限的操作

目录 一&#xff0c;Linux的用户 1&#xff0c;用户之间的切换 2&#xff0c;超级用户权限的使用 二&#xff0c;Linux的文件权限 1&#xff0c;文件信息的介绍 2&#xff0c;文件权限的修改 3&#xff0c;用户的修改 3-1&#xff0c;拥有者的更改 3-2&#xff0c;所属…

chinese-stable-diffusion中文场景文生图prompt测评集合

腾讯混元大模型文生图操作指南.dochttps://mp.weixin.qq.com/s/u0AGtpwm_LmgnDY7OQhKGg腾讯混元大模型再进化&#xff0c;文生图能力重磅上线&#xff0c;这里是一手实测腾讯混元的文生图在人像真实感、场景真实感上有比较明显的优势&#xff0c;同时&#xff0c;在中国风景、动…