阿里云安全恶意程序检测

news2025/1/19 3:21:57

阿里云安全恶意程序检测

  • 赛题理解
    • 赛题介绍
      • 赛题说明
      • 数据说明
      • 评测指标
    • 赛题分析
      • 数据特征
      • 解题思路
  • 数据探索
    • 数据特征类型
    • 数据分布
      • 箱型图
    • 变量取值分布
      • 缺失值
      • 异常值
      • 分析训练集的tid特征
      • 标签分布
      • 测试集数据探索同上
    • 数据集联合分析
      • file_id分析
      • API分析
  • 特征工程与基线模型
    • 构造特征与特征选择
      • 基于数据类型的方法
      • 基于多分析视角的方法
      • 特征选择
    • 构造线下验证集
      • 评估穿越
      • 训练集和测试集的特征性差异
      • 训练集和测试集是分布差异性
    • 基线模型
      • 特征工程
      • 基线构建
      • 特征重要性分析
      • 模型测试

赛题理解

赛题介绍

赛题说明

本题目提供的数据来自经过沙箱程序模拟运行后的API指令序列,全为Windows二进制可执行程序,经过脱敏处理:样本数据均来自互联网,其中恶意文件的类型有感染型病毒、木马程序、挖矿程序、DDoS 木马、勒索病毒等,数据总计6亿条。

注:什么是沙箱程序?
在计算机安全中,沙箱(Sandbox)是一种用于隔离正在运行程序的安全机制,通常用于执行未经测试或者不受信任的程序或代码,它会为待执行的程序创建一个独立的执行环境,内部程序的执行不会影响到外部程序的运行。

数据说明

在这里插入图片描述

评测指标

在这里插入图片描述
需特别注意,log 对于小于1的数是非常敏感的。比如log0.1和log0.000 001的单个样本的误差为10左右,而log0.99和log0.95的单个误差为0.1左右。

logloss和AUC的区别:AUC只在乎把正样本排到前面的能力,logloss更加注重评估的准确性。如果给预测值乘以一个倍数,则AUC不会变,但是logloss 会变。

赛题分析

数据特征

在这里插入图片描述
本赛题的特征主要是API接口的名称,这是融合时序与文本的数据,同时接口名称基本表达了接口用途。因此,最基本、最简单的特征思路是对所有API数据构造CountVectorizer特征

说明: CountVectorizer 是属于常见的特征数值计算类,是一个文本特征提取方法。对于每一个训练文本,它只考虑每种词汇在该训练文本中出现的频率。

解题思路

本赛题根据官方提供的每个文件对API的调用顺序及线程的相关信息按文件进行分类,将文件属于每个类的概率作为最终的结果进行提交,并采用官方的logloss作为最终评分,属于典型的多分类问题

数据探索

数据特征类型

train.info()
train.head(5)
train.describe()

数据分布

箱型图

#使用箱型图查看单个变量的分布情况。
#取前10000条数据绘制tid变量的箱型图
#os:当数据量太大时,变量可视化取一部分
sns.boxplot(x = train.iloc[:10000]["tid"])

在这里插入图片描述

变量取值分布

#用函数查看训练集中变量取值的分布
train.nunique()

缺失值

#查看缺失值
train.isnull().sum()

异常值

#异常值:分析训练集的index特征
train['index'].describe()

分析训练集的tid特征

#分析训练集的tid特征
train['tid'].describe()

标签分布

#统计标签取值的分布情况
train['label'].value_counts()

直观化:

train['label'].value_counts().sort_index().plot(kind = 'bar')

在这里插入图片描述

train['label'].value_counts().sort_index().plot(kind = 'pie')

在这里插入图片描述

测试集数据探索同上

数据集联合分析

file_id分析

#对比分析file_id变量在训练集和测试集中分布的重合情况:
train_fileids = train['file_id'].unique()
test_fileids = test['file_id'].unique()
len(set(train_fileids) - set(test_fileids))

API分析

#对比分析API变量在训练集和测试集中分布的重合情况
train_apis = train['api'].unique()
test_apis = test['api'].unique()
set(set(test_apis) - set(train_apis))

特征工程与基线模型

构造特征与特征选择

基于数据类型的方法

在这里插入图片描述

基于多分析视角的方法

这是最常见的一种特征构造方法,在所有的基于table 型(结构化数据)的比赛中都会用到。

我们以用户是否会在未来三天购买同一物品为例,来说明此类数据的构建角度:用户长期购物特征,用户长期购物频率;用户短期购物特征,用户近期购物频率;物品受欢迎程度,该物品最近受欢迎程度;

用户对此类产品的喜好特征:用户之前购买该类/该商品的频率等信息;

时间特征:是否到用户发工资的时间段:商品是否为用户的必备品,如洗漱用品、每隔多长时间必买等。

特征选择

特征选择主要包含过滤法、包装法和嵌入法三种,前面已经介绍过。

构造线下验证集

在数据竞赛中,为了防止选手过度刷分和作弊,每日的线上提交往往是有次数限制的。因此,线下验证集的构造成为检验特征工程、模型是否有效的关键。在构造线下验证集时,我们需要考虑以下几个方面的问题。

评估穿越

评估穿越最常见的形式是时间穿越和会话穿越两种。

1.时间穿越

例1: 假设我们需要预测用户是否会去观看视频B,在测试集中需要预测用户8月8日上午10:10点击观看视频B的概率,但是在训练集中已经发现该用户8月8日上午10:09在观看视频A,上午10:11 也在观看视频A,那么很明显该用户就有非常大的概率不看视频B,通过未来的信息很容易就得出了该判断。

例2: 假设我们需要预测用户9月10日银行卡的消费金额,但是在训练集中已经出现了该用户银行卡的余额在9月9日和9月11日都为0,那么我们就很容易知道该用户在9月10日的消费金额是0,出现了时间穿越的消息。

2.会话穿越

以电商网站的推荐为例,当用户在浏览某一个商品时,某个推荐模块会为他推荐多个商品进行展现,用户可能会点击其中的一个或几个。为了描述方便,我们将这些一 次展现中产生的,点击和未点击的数据合起来称为一 次会话(不同于计算机网络中会话的概念)。在上面描述的样本划分方法中,一次会话中的样本可能有一部分被划分到训练集,另一部分被划分到测试集。这样的行为,我们称之为会话穿越。

会话穿越的问题在于,由于一个会话对应的是
一个用户在一次展现中的行为,因此存在较高的相关性,穿越会带来类似上面提到的用练习题考试的问题。此外,会话本身是不可分割的,也就是说,在线上使用模型时,不可能让你先看到一次会话的一部分,然后让你预测剩余的部分,因为会话的展现结果是一次性产生的,一旦产生后,模型就已经无法干预展现的结果了。

3.穿越本质

穿越本质上是信息泄露的问题。无论时间穿越,还是会话穿越,其核心问题都是训练数据中的信息以不同方式、不同程度泄露到了测试数据中。.

训练集和测试集的特征性差异

我们用训练集训练模型,当训练集和测试集的特征分布有差异时,就容易造成模型偏差,导致预测不准确。常见的训练集和测试集的特征差异如下:

数值特征:训练集和测试集的特征分布交叉部分极小;
在这里插入图片描述
类别特征:测试集中的特征大量未出现在训练集中。例如,在微软的一场比赛中,测试集中的很多版本未出现在训练集中。

在某些极端情况下,训练集中极强的特征会在测试集中全部缺失。

训练集和测试集是分布差异性

训练集和测试集的分布差异性的判断步骤如下:
将训练集的数据标记为label=1,将测试集的数据标记为label= 0。对训练集和测试集做5折的auc交叉验证。如果auc在0.5附近,那么则说明训练集和测试集的分布差异不大:如果auc在0.9附近,那么则说明训练集和测试集的分布差异很大。

基线模型

导包 -> 读取数据 -> 特征工程

特征工程

·利用count()函数和nunique()函数生成特征:反应样本调用api,tid,index的频率信息


def simple_sts_features(df):
    simple_fea = pd.DataFrame()
    simple_fea['file_id'] = df['file_id'].unique()
    simple_fea = simple_fea.sort_values('file_id')
    
    df_grp = df.groupby('file_id')
    simple_fea['file_id_api_count'] = df_grp['api'].count().values
    simple_fea['file_id_api_nunique'] = df_grp['api'].nunique().values
    
    simple_fea['file_id_tid_count'] = df_grp['tid'].count().values
    simple_fea['file_id_tid_nunique'] = df_grp['tid'].nunique().values
    
    simple_fea['file_id_index_count'] = df_grp['index'].count().values
    simple_fea['file_id_index_nunique'] = df_grp['index'].nunique().values
    
    return simple_fea

·利用main(),min(),std(),max()函数生成特征:tid,index可认为是数值特征,可提取对应的统计特征。


def simple_numerical_sts_features(df):
    simple_numerical_fea = pd.DataFrame()
    simple_numerical_fea['file_id'] = df['file_id'].unique()
    simple_numerical_fea = simple_numerical_fea.sort_values('file_id')
    
    df_grp = df.groupby('file_id')
    
    simple_numerical_fea['file_id_tid_mean'] = df_grp['tid'].mean().values
    simple_numerical_fea['file_id_tid_min'] = df_grp['tid'].min().values
    simple_numerical_fea['file_id_tid_std'] = df_grp['tid'].std().values
    simple_numerical_fea['file_id_tid_max'] = df_grp['tid'].max().values
    
    simple_numerical_fea['file_id_index_mean'] = df_grp['index'].mean().values
    simple_numerical_fea['file_id_index_min'] = df_grp['index'].min().values
    simple_numerical_fea['file_id_index_std'] = df_grp['index'].std().values
    simple_numerical_fea['file_id_index_max'] = df_grp['index'].max().values
    
    return simple_numerical_fea

·利用定义的特征生成函数,并生成训练集和测试集的统计特征。

%%time
#统计api,tid,index的频率信息的特征统计
simple_train_fea1 = simple_sts_features(train)
%%time
simple_test_fea1 = simple_sts_features(test)
%%time
#统计tid,index等数值特征的特征统计
simple_train_fea2 = simple_numerical_sts_features(train)
%%time
simple_test_fea2 = simple_numerical_sts_features(test)

基线构建

获取标签:

#获取标签
train_label = train[['file_id','label']].drop_duplicates(subset=['file_id','label'],keep='first')
test_submit = test[['file_id']].drop_duplicates(subset=['file_id'],keep='first')

训练集和测试集的构建:

#训练集和测试集的构建
train_data = train_label.merge(simple_train_fea1,on = 'file_id',how = 'left')
train_data = train_data.merge(simple_train_fea2,on = 'file_id',how = 'left')

test_submit = test_submit.merge(simple_test_fea1,on = 'file_id',how = 'left')
test_submit = test_submit.merge(simple_test_fea2,on = 'file_id',how = 'left')

因为本赛题给出的指标和传统的指标略有不同,所以需要自己写评估指标,这样方便对比线下与线上的差距,以判断是否过拟合、是否出现线上线下不一致的问题等。
在这里插入图片描述

#关于LGB的自定义评估指标的书写
def lgb_logloss(preds,data):
    labels_ = data.get_label()
    classes_ = np.unique(labels_)
    preds_prob = []
    for i in range(len(classes_)):
        preds_prob.append(preds[i * len(labels_):(i+1)*len(labels_)])
        
    preds_prob_ = np.vstack(preds_prob)
    
    loss = []
    for i in range(preds_prob_.shape[1]):  #样本个数
        sum_ = 0
        for j in range(preds_prob_.shape[0]):  #类别个数
            pred = preds_prob_[j,i]  #第i个样本预测为第j类的概率
            if j == labels_[i]:
                sum_ += np.log(pred)
            else:
                sum_ += np.log(1 - pred)
        loss.append(sum_)
        return 'loss is: ',-1 * (np.sum(loss) / preds_prob_.shape[1]),False

线下验证:

train_features = [col for col in train_data.columns if col not in ['label','file_id']]
train_label = 'label'

使用5折交叉验证,采用LGB模型:

%%time


from sklearn.model_selection import StratifiedKFold,KFold
params = {
    'task':'train',
    'num_leaves':255,
    'objective':'multiclass',
    'num_class':8,
    'min_data_in_leaf':50,
    'learning_rate':0.05,
    'feature_fraction':0.85,
    'bagging_fraction':0.85,
    'bagging_freq':5,
    'max_bin':128,
    'random_state':100
}

folds = KFold(n_splits=5,shuffle=True,random_state = 15)  #n_splits = 5定义5折
oof = np.zeros(len(train))

predict_res = 0
models = []
for fold_, (trn_idx,val_idx) in enumerate(folds.split(train_data)):
    print("fold n°{}".format(fold_))
    trn_data = lgb.Dataset(train_data.iloc[trn_idx][train_features],label = train_data.iloc[trn_idx][train_label].values)
    val_data = lgb.Dataset(train_data.iloc[val_idx][train_features],label = train_data.iloc[val_idx][train_label].values)
    
    clf = lgb.train(params,
                   trn_data,
                   num_boost_round = 2000,
                   valid_sets = [trn_data,val_data],
                   verbose_eval = 50,
                   early_stopping_rounds = 100,
                   feval = lgb_logloss)
    models.append(clf)

特征重要性分析

#特征重要性分析
feature_importance = pd.DataFrame()
feature_importance['fea_name'] = train_features
feature_importance['fea_imp'] = clf.feature_importance()
feature_importance = feature_importance.sort_values('fea_imp',ascending = False)
plt.figure(figsize = [20,10,])
sns.barplot(x = feature_importance['fea_name'],y = feature_importance['fea_imp'])

在这里插入图片描述
由运行结果可以看出:

(1) API的调用次数和API的调用类别数是最重要的两个特征,即不同的病毒常常会调用不同的API,而且由于有些病毒需要复制自身的原因,因此调用API的次数会明显比其他不同类别的病毒多。

(2)第三到第五强的都是线程统计特征,这也较为容易理解,因为木马等病毒经常需要通过线程监听一些内容,所以在线程等使用上会表现的略有不同。

模型测试

#模型测试
pred_res = 0
fold = 5
for model in models:
    pred_res += model.predict(test_submit[train_features]) * 1.0 /fold
test_submit['prob0'] = 0
test_submit['prob1'] = 0
...
test_submit[['prob0','prob1','prob2','prob3','prob4','prob5','prob6','prob7']] = pred_res
test_submit[['file_id','prob0','prob1','prob2','prob3','prob4','prob5','prob6','prob7']].to_csv('baseline.csv',index = None)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1171827.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

driver.find_element()用法

driver.find_element()用于在Web页面中定位单个元素。它是Selenium WebDriver库中的 一种方法。该方法接受一个定位器(locator)和一个值作为参数,用于指定要查找的元素 位置。下面是具体的用法和一些例子: 通过ID定位元素&#x…

AI神助攻,购物更省心:我即将上线一套企业数据高度契合的智能导购APP来开创这一新纪元

将要做什么事的介绍 近期博客写了少了,是因为近小半年来我正在打造一款可私布在企业内部并结合企业自有领域(零售商超先行)数据的智能导购引擎。截止目前为止还算顺利,并且我将很快将在中国本土的一家生鲜百货超市上线这一款生成…

[iOS开发]iOS中TabBar中间按钮凸起的实现

在日常使用app的过程中,经常能看到人家实现了底部分栏控制器的中间按钮凸起的效果,那么这是怎么实现的呢? 效果演示: 实现原理: 创建按钮 创建一个UITabBar的子类,重写它的layoutSubviews方法&#xff1…

redis源码分析之IO多路复用

文章目录 1、简述2、多路复用的三个函数3、创建epoll实例4、绑定端口、监听端口5、向epoll实例注册连接事件6、从epoll实例中获取就绪的事件 1、简述 众所周知,redis是一款抗高并发的利器,据官方压测,单机可达10万qps。但背后实际处理命令的…

字典与数组第八讲:工作表数据计算时为什么要采用数组公式(二)

《VBA数组与字典方案》教程(10144533)是我推出的第三套教程,目前已经是第二版修订了。这套教程定位于中级,字典是VBA的精华,我要求学员必学。7.1.3.9教程和手册掌握后,可以解决大多数工作中遇到的实际问题。…

具有自主产权的SaaS门店收银系统全套源码输出

PHPMysql前后端分离, 小程序线上商城; 进销存管理库存盘点, 多仓库库存调拨, 会员系统。 消费者扫码查价系统。

外卖行业如何借助微信管理系统实现高效运营

摘要:本文将介绍微信管理系统在外卖行业的应用,包括聚合聊天、朋友圈营销和群发功能。通过这些功能,外卖商家可以更高效地管理订单、与客户沟通、推广品牌和增加销售额。 一、引言 随着外卖行业的快速发展,竞争也日益激烈。为了…

前端面试题之HTML篇

1、src 和 href 的区别 具有src的标签有:script、img、iframe 具有href的标签有:link、a 区别 src 是source的缩写。表示源的意思,指向资源的地址并下载应用到文档中。会阻塞文档的渲染,也就是为什么js脚本放在底部而不是头部的…

Vert.x学习笔记-Vert.x的基本处理单元Verticle

Verticle介绍 Verticle是Vert.x的基本处理单元,Vert.x应用程序中存在着处理各种事件的处理单元,比如负责HTTP API响应请求的处理单元、负责数据库存取的处理单元、负责向第三方发送请求的处理单元。Verticle就是对这些功能单元的封装,Vertic…

数据中心系统解决方案

设计思路 系统设计过程中充分考虑各个子系统的信息共享要求,对各子系统进行结构化和标准化设计,通过系统间的各种联动方式将其整合成一个有机的整体,使之成为一套整体的、全方位的数据中心大楼综合管理系统,达到人防、物防和技防…

MySQL8.0.26-unbuntu版安装

MySQL8.0.26-ubuntu版安装 在这里会有一个坑,就是我在安装的时候,是按照另外一种版本的安装,报错没有rpm这个包,然后我就去下载,然后就报错 E: 无法定位软件包 ,害的我找了好久的资料,一直没有解决&#x…

2023-11-04:用go语言,如果n = 1,打印 1*** 如果n = 2,打印 1*** 3*** 2*** 如果n = 3,打印

2023-11-04:用go语言,如果n 1,打印 1*** 如果n 2,打印 1***3*** 2*** 如果n 3,打印 1***3*** 2***4*** 5*** 6*** 如果n 4,打印 1***3*** 2***4*** 5*** 6***10** 9*** 8*** 7*** 输入…

SoftwareTest5 - 你就只知道功能测试吗 ?

你就只知道功能测试吗 ? 一 . 按照测试对象划分1.1 文档测试1.2 可靠性测试1.3 容错性测试1.4 安装卸载测试1.5 内存泄漏测试1.6 弱网测试 二 . 按是否查看代码划分2.1 黑盒测试2.2 白盒测试2.3 灰盒测试 三 . 按照开发阶段划分3.1 单元测试3.2 集成测试3.3 冒烟测试3.4 系统测…

如何通过智能管理箱实现高效文件管理:关键字轻松修改文件名

在信息化时代,文件管理变得尤为重要。智能管理箱已经成为我们生活中不可或缺的一部分。它可以帮助我们高效地管理各种文件,使得我们的工作和生活更加便捷。是一种高效的文件管理工具,可以帮助我们轻松地整理和分类文件,提高工作效…

【算法】昂贵的聘礼(dijkstra算法)

题目 年轻的探险家来到了一个印第安部落里。 在那里他和酋长的女儿相爱了,于是便向酋长去求亲。 酋长要他用 10000 个金币作为聘礼才答应把女儿嫁给他。 探险家拿不出这么多金币,便请求酋长降低要求。 酋长说:”嗯,如果你能够替我…

SpringBoot+AOP+自定义注解,优雅实现日志记录

文章目录 前言准备阶段1、数据库日志表2、自定义注解编写3、AOP切面类编写4、业务层4.1、Service 层:4.2 Service 实现层: 5、测试 前言 首先我们看下传统记录日志的方式是什么样的: DeleteMapping("/deleteUserById/{userId}") …

【C语言:函数栈帧的创建与销毁】

文章目录 前言一、前期准备1.寄存器2.汇编指令3.测试代码 二、解开函数栈帧的神秘面纱1.栈帧大体轮廓2.main函数栈帧的创建3.main函数内执行有效代码4.烫烫烫5.函数参数的传递6.add函数栈帧的创建7.add函数内执行有效代码8.add是如何获得参数的9. add函数栈帧的销毁10.main函数…

IDEA中如何移除未使用的import

👨🏻‍💻 热爱摄影的程序员 👨🏻‍🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻‍🏫 一位高冷无情的编码爱好者 大家好,我是全栈工…

@Slf4j将日志记录到磁盘和数据库

文章目录 1、背景介绍2、存本地2.1、配置文件2.2、使用 3、存数据库3.1、配置文件改造3.2、过滤器编写3.3、表准备3.4、添加依赖3.5、测试 4、优化4.1、日志定期删除 1、背景介绍 现在我一个SpringBoot项目想记录日志,大概可以分为下面这几种: 用户操作…

速学数据结构 | 链表实现队列究竟有什么优势?

🎬 鸽芷咕:个人主页 🔥 个人专栏:《速学数据结构》 《C语言进阶篇》 ⛺️生活的理想,就是为了理想的生活! 📋 前言 🌈hello! 各位宝子们大家好啊,栈区的实现我们前面已经讲了&#…