浪潮信息“拓荒”:一场面向大模型时代的性能“压榨”

news2024/11/16 13:33:08

文 | 智能相对论

作者 | 沈浪

全球人工智能产业正被限制在了名为“算力”的瓶颈中,一侧是供不应求的高端芯片,另一侧则是激战正酣的“百模大战”,市场的供求两端已然失衡。

然而,大多数人的关注点仍旧还是在以英伟达为主导的高端芯片领域。

半导体的创新固然关键,但是从现实处境来讲,芯片从造出来到用起来,是一个庞大的系统工程,市场更需要一条能暂时绕开半导体创新的系统创新的技术路径,来同步释放算力,以满足现阶段爆发性的算力需求以及后期可持续的常态发展。

遵循着这一思路,就不难发现,以浪潮信息为代表的本土厂商已经开始了另一条释放算力的创新路径,即对服务器等硬件的基础架构进行创新,在硬件层面“拓荒”,“压榨”更多的硬件性能,打破算力桎梏。

只是这样的路径,似乎没有想象中的那么简单、轻松。

01  向底层“拓荒”,激活“牛鞭效应”

以服务器为例,一台服务器有超过10000个零部件,同时还涉及30多个技术领域,包括材料学、热力学、电池技术、流体力学、化学等一系列学科。此外,一台服务器里还会应用超过100种传输协议。其制造过程更是需要经历30多道流程,使用100多种加工和制造工艺等等。

若要对这样的高精密硬件的基础架构进行创新,绝非易事。

在四五年前,一些大规模数据中心用户几乎都遇到过一个相似的问题:风扇转速越快,硬盘越有可能出现性能波动,严重时还会直接掉线,非常影响硬盘的读写性能。

浪潮信息的工程师团队做了大量实验,最终锁定原因:风扇产生的噪音一旦达到120分贝,就非常容易造成硬盘磁头偏移、读写效率下降,进而导致扇区失效乃至硬盘报废、服务器宕机。

尽管这样的问题看起来很小,却对服务器的性能有着严重制约。如何解决服务器内部的风噪问题,成为了一个业内共同探索的议题。国际开放计算社区OCP组织成员包括FaceBook(现为Meta公司)、微软、浪潮信息、戴尔等企业,共同发起Storage Vibration(存储设备振动)项目,旨在解决相关的问题。

最终,浪潮信息的工程师们基于大量机理性研究和测试,发现了硬盘性能损失与声压强度间的数学规律,并构建出业界首个硬盘敏感度模型,量化出不同硬盘受到各类噪声影响后的性能表现。

以此为依据,浪潮信息也得以对最新G7服务器系统进行了全方位的优化设计,譬如通过CFD流体动力学仿真改进·不同机箱布局下的风扇的叶片形态,抑制扇叶表面因涡流脱落形成的高频噪音,提升硬盘读写效率50%;或是在机箱内通过设计40多种歌院式的消音结构,消除特定的高频噪声等等。

这些“绣花针”功夫是创新底层架构的关键,而看似很微小的基础改良,却是提升服务器性能、保障硬件平稳运行的重要因素。在经济学领域,有一个专业术语叫作“牛鞭效应”,指一端微小的摆动被不断放大,到了另一端将演变为大幅摆动的趋势。

从硬件的应用来看,基础部件的改良也将激活“牛鞭效应”——从一张硬盘到一个服务器,再到一个数据中心,随着硬件不断叠加应用,底层的改良价值将被逐步放大,向上层传递,成为服务器安全运作、释放算力、促进人工智能产业发展的重要保障。

类似的,现阶段备受关注的芯片互联技术,也是支撑大模型大规模算力场景的关键技术,尤其是单个服务器内部芯片高速直连,是实现大规模算力集群高效协同工作的基础。作为全球领先的服务器厂商,浪潮信息在高速互连领域定义了业界第一个符合OAM(开放加速模块)规范的8卡互连硬件系统,解决了高速信号的速率提升和信号失真问题,实现开放加速规范下芯片互连的最高速率,助力着人工智能产业的持续突破。

02  一场对性能的极限“压榨”

在人工智能行业,算力的巨大需求和供给紧张已然是摆上台面的事实。为什么业内厂商想要不断地改进传统的硬件架构去释放算力,哪怕只是一点细微的声噪优化,都不遗余力地花上四五年的时间去研究、探索和创新。

细究来说,算力的供应大抵可以归结为两条路径,一是“增量拓展”,比如接入更多的服务器、建更多的数据中心,通过“堆量”的方式来提供更多的算力。二是“存量优化”,对原有架构、原有机器进行优化升级,通过“提质”的方式来把性能和效率提升起来。

其中,在这两条路径之下,“存量优化”又是必然的一条。无关乎未来算力是否紧张或宽裕,如何对现有的机器和架构进行升级优化,是行业发展的一个重要阶段,只是时间早晚的问题。

值得一提的是,现阶段,服务器行业已经有着充分的理由去推进“存量优化”这一路径。

一方面,算力领域正在面临着高端芯片紧张的问题,“增量拓展”被限制,那么业内厂商就不得不考虑“存量优化”的事情。

另一方面,源于服务器的特殊性,在服务器概念上的简单的“堆量”只能堆出各种形态和规格的服务器,但对数据中心计算能力的提升并没有什么实质性的帮助。

对此,在2014年,浪潮信息提出了“融合架构”的技术理念,旨在创造一种新的体系架构,将硬件设备中的同类资源整合成一个资源池,即便是不同的设备也能够任意地整合,再通过软件动态感知业务的资源需求,从而利用硬件重组的能力来满足各类应用的性能需求。

这种“融合架构”看似是“增量拓展”,但核心则是“存量优化”。直到融合架构3.0的发布,就可以清晰地看到,这一技术理念打破了现有服务器的逻辑架构和应用模式,实现了整机柜级别的计算、内存、存储与互联等各种IT资源的池化,形成了以系统设计为中心的新架构模式,对构建高速高性能的互联网络起到了重要作用。

简单来说,基于“池化”的概念,融合架构3.0将服务器内的计算资源、存储资源、内存资源、异构加速资源等核心IT资源重新细化,并做了“重组”,从而能使其发挥出更高的性能和应用价值。

这相当于对现有的服务器性能做了一次极限地“压榨”。众所周知,传统服务器的性能利用率是无法达到100%,两台服务器相连得到大多是1+1<2结果,而基于融合架构3.0的支持,就有可能实现1+1>2的情况。

当然,这只是一个便于理解的理想化公式,现实大抵是达不到这个效果的。但是,其中的进步也是看得见的,特别是随着服务器的增加,当我们再来估算1+1+1+...+N的效果时,在融合架构3.0下的服务器便能发挥出远超传统架构的性能和价值。

这是融合架构3.0的价值展望,同时也是“存量优化”这一路径在服务器行业的价值呈现。正如上文提及的“牛鞭效应”,当底层细微的创新不断被放大到一个硬件、一个计算集群、一个产业生态,那么其发挥出来的作用将远超过往。

03  在算力之外

当前,在服务器行业,就能看到类似的信号。

继续以融合架构3.0为例,其打破了以往“以CPU为中心”的设计理念,从整体出发,以系统为中心,通过硬件解耦将异构计算、内存、存储等资源转变为可独立扩展的资源池。

在这个过程中,不仅实现了亚微秒级远端内存访问,并且还构建出了一种逻辑上可远端共享的内存资源池,让多台主机访问同一个内存池,从而大大提高了数据交换的效率,让Spark、Hadoop和机器学习等使用分布式数据框架的应用,能够更顺畅地实现框架内各节点间的数据交换与协作。

也就是说,融合架构3.0解决的不仅仅是服务器性能、算力释放等问题,实际上还继续向上层拓展,解决了系统应用的问题——服务器的架构创新在算力之外,带来了全新的价值呈现。

类似的,放眼全球市场,微软与英伟达合作推出的虚拟机Azure ND H100 v5 VM系列,正基于强大的硬件能力支持结合Quantum-2InfiniBand网络互连,从而帮助企业更好、更高效地处理生成式AI任务。

现阶段,大多数硬件升级并非单线的,而是考虑到上层的应用需求,如大模型训练、生成式AI任务等,结合软件系统、网络服务等进行融合创新,从而为应用场景服务。

纵观当前人工智能产业在算力层面的困顿处境,以算力牵动整个人工智能产业的发展是必然的趋势。而业内厂商在解决算力供给问题的过程,也将同步带动其他模块的升级。换句话说,解决算力问题就不能局限在高端芯片领域,更要从其他的路径寻求多元化的发展。

在这个阶段,以英伟达为主导的高端芯片领域和以浪潮信息为代表的服务器硬件升级,都将站在市场的聚光灯下。今天的市场,需要更多元、更勇敢、更执着的探索者、创新者。

*本文图片均来源于网络 

#智能相对论  Focusing on智能新产业新服务,这是智能的服务NO.247深度解读

此内容为【智能相对论】原创,

仅代表个人观点,未经授权,任何人不得以任何方式使用,包括转载、摘编、复制或建立镜像。

部分图片来自网络,且未核实版权归属,不作为商业用途,如有侵犯,请作者与我们联系。

•AI产业新媒体;

•澎湃新闻科技榜单月度top5;

•文章长期“霸占”钛媒体热门文章排行榜TOP10;

•著有《人工智能 十万个为什么》

•【重点关注领域】智能家电(含白电、黑电、智能手机、无人机等AIoT设备)、智能驾驶、AI+医疗、机器人、物联网、AI+金融、AI+教育、AR/VR、云计算、开发者以及背后的芯片、算法等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1163711.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

喜欢 Android 14 的 14 个理由

和去年 8 月中旬发布的 Android 13 正式版不同&#xff0c;今年的 Android 14 正式版延后到了 10 月 4 日——也就是 Pixel 8 系列发布的同一天。原因我们似乎也能从 Google 宣传新特性中略窥一二&#xff1a; 除了明确表示会率先向特定 Pixel 机型推送的 AI 壁纸生成&#xf…

网络层 IP协议

网络层&#xff1a;为分组交换网上的不同主机提供分组交换服务。 IP协议 协议格式 4位版本&#xff1a;ipv4就是4. 4位首部长度&#xff1a;20字节固定40字节选项。 8位服务类型&#xff1a;TOC&#xff0c;高三位表示优先级&#xff0c;已弃用&#xff0c;其次从高到底依次为…

内网穿透 cpolar

内网穿透可以使本地启动的服务让他人访问&#xff0c;不受局域网的限制。常见的是使用第三方服务&#xff0c;厉害的自己搭建。对于我这种水平来说&#xff0c;肯定是使用第三方服务。常见的 frp、ngrok、PortForward、cpolar 花生壳等等。 为什么需要内网穿透&#xff0c;因为…

性能测试常用术语

之前在性能测试过程中&#xff0c;对于某些其中的术语一知半解&#xff0c;导致踩了很多坑。这篇博客&#xff0c;就常见的一些性能测试术语进行一次浅析。。。 负载 对被测系统不断施加压力&#xff0c;直到性能指标超过预期或某项资源使用达到饱和&#xff0c;以验证系统的处…

windows 运行 Mysql Command Line Client 自动关闭闪退原因分析

目录 原因分析一 原因分析二 原因分析三 第一次使用 MySQL Command Line Client 有可能输入密码后一按下回车键&#xff0c;程序窗口就自动关闭&#xff0c;出现闪退现象。本节主要分析产生闪退现象的原因以及如何处理这种情况。 原因分析一 首先可以查看程序默认执行文件…

java--构造器

1.构造器是什么样子 构造器分为无参构造(就相当于你有车子&#xff0c;但是里面是空的)和带参构造(就相当于你有车子&#xff0c;里面还有几个妹纸&#xff0c;你真该死啊) 2.构造器有什么特点 创建对象时&#xff0c;对象会去调用构造器。 3.构造器的常见应用场景 创建对象…

物联网中的ESP8266该这么用!

&#x1f64c;秋名山码民的主页 &#x1f602;oi退役选手&#xff0c;Java、大数据、单片机、IoT均有所涉猎&#xff0c;热爱技术&#xff0c;技术无罪 &#x1f389;欢迎关注&#x1f50e;点赞&#x1f44d;收藏⭐️留言&#x1f4dd; 获取源码&#xff0c;添加WX 目录 1. 前言…

win10 esd文件转iso

想装个win10虚拟机&#xff0c;在系统之家下载了iso&#xff0c;然后开始装&#xff0c;发现虚拟机找不到系统&#xff0c; 插&#xff0c;啥原因&#xff0c;解压出iso一看&#xff0c;有个exe文件&#xff0c;要运行他才安装&#xff0c;不地道啊&#xff0c;现在为什么搞这…

Viessmann Vitogate远程代码执行漏洞(CVE-2023-45852)

Viessmann Vitogate远程代码执行漏洞&#xff08;CVE-2023-45852&#xff09; 免责声明漏洞描述漏洞影响漏洞危害网络测绘Fofa: body"vitogate 300" 漏洞复现1. 构造poc2. 执行命令查看用户 免责声明 仅用于技术交流,目的是向相关安全人员展示漏洞利用方式,以便更好…

SpringCloudGateway--过滤器(自定义filter)

目录 一、概览 二、通过GatewayFilter实现 三、继承AbstractGatewayFilterFactory 一、概览 当使用Spring Cloud Gateway构建API网关时&#xff0c;可以利用Spring Cloud Gateway提供的内置过滤器&#xff08;filter&#xff09;来实现对请求的处理和响应的处理。过滤器可以…

无需专线、无需固定公网IP,各地安防数据如何高效上云?

某专注于安防领域的企业&#xff0c;供机场、金融、智慧大厦等行业&#xff0c;包括门禁系统、巡更系统、视频监控在内的整体解决方案。 在实际方案交付过程中&#xff0c;往往需要在多地分支机构分别部署相应的安防设备&#xff0c;并将产生的数据实时统一汇总至云平台进行管理…

PyQuery库写一个有趣的爬虫程序

PyQuery库是一个基于jQuery语法的Python库&#xff0c;它可以方便地对HTML/XML文档进行解析和操作。使用PyQuery库可以快速地获取网页中的数据&#xff0c;进行数据清洗和分析。PyQuery库的基本用法包括字符串初始化、打开网页、css属性、标签内容等获取、DOM基本操作等相关技巧…

OSPF高级特性2(特殊区域,聚合)

目录 一、特殊区域 1、STUB区域&#xff1a; 2、totally stub区域 3、NSSA区域&#xff08;Not-So-stubby Area&#xff09; 4、totally NSSA区域 二、OSPF路由聚合 一、特殊区域 定义&#xff1a;特殊区域是指人为定义的一些区域&#xff0c;它们在逻辑中一般位于ospf区…

shell script 案例二

需求&#xff0c;运行程序&#xff0c;用户输入firstname&#xff0c;回车&#xff0c;再次提示输入lastname&#xff0c;然后回车&#xff0c;屏幕打印fullname信息 注意&#xff1a;前期写程序要注意规范&#xff0c;方便以后自己写多了回头看可以看的懂&#xff0c;程序代码…

2023年【低压电工】考试及低压电工模拟考试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 低压电工考试根据新低压电工考试大纲要求&#xff0c;安全生产模拟考试一点通将低压电工模拟考试试题进行汇编&#xff0c;组成一套低压电工全真模拟考试试题&#xff0c;学员可通过低压电工模拟考试题全真模拟&#…

josef约瑟 DJS-1/G 跳闸回路监视继电器 AC220V

系列型号 DJS-1跳闸回路监视继电器 DJS-1G跳闸回路监视继电器 DJS-1/G跳闸回路监视继电器 一、用途 DJS-1型跳闸回路监视继电器可连续监视短路器中的跳闸回路。并对下列情况产生报警。 a&#xff09;DC电源消失&#xff1b; b&#xff09;跳闸线圈及其引线发生故障&#…

Intel oneAPI笔记(1)--oneAPI简介、SYCL编程简介

oneAPI简介 Intel oneAPI是Intel提供的统一编程模型和软件开发框架。 它旨在简化可充分利用英特尔各种硬件架构&#xff08;包括 CPU、GPU 和 FPGA&#xff09;的应用程序的开发 oneAPI一个重要的特性是开放性&#xff0c;支持多种类型的架构和不同的硬件供应商&#xff0c;是…

何恺明:在cuhk解答科研问题

文章目录 1. 大模型的未来:数据效益是个问题2. 未来三年研究重点:视觉自监督学习3. 选择课题的标准:好奇心和热情4. AI将成为几乎所有事情的基础工具5. 用疑问解答AI模型可解释性问题AcknowledgementReference何恺明最近在香港中文大学参加一个讲座过程中所述: 1. 大模型的…

MT8365安卓核心板—联发科MTK8365(I350)性能参数

MT8365安卓核心板是基于联发科MTK8365芯片开发的一款高性能核心板。该核心板模块板载内存容量为1GB8GB(也可选择2GB16GB、3GB32GB、4GB64GB)&#xff0c;默认搭载谷歌的Android 11.0系统。它集成了丰富的功能接口&#xff0c;包括LCM接口、摄像头接口、触摸屏接口、麦克风接口、…

[计算机提升] Windows系统软件:娱乐类

3.3 系统软件&#xff1a;娱乐类 3.3.1 Windows Media Player&#xff1a;dvdplay Windows Media Player是Windows操作系统自带的多媒体播放软件&#xff0c;用于播放和管理电脑中的音频和视频文件。它提供了以下功能&#xff1a; 播放音频和视频文件&#xff1a;Windows Med…