【零参考GAN:Pansharpening】

news2025/1/11 11:39:03

ZeRGAN: Zero-Reference GAN for Fusion of Multispectral and Panchromatic Images

(用于多光谱和全色图像融合的零参考GAN)

本文提出了一种融合低空间分辨率多光谱(LR MS)和高空间分辨率全色(PAN)图像的新的全色锐化方法–零参考生成对抗网络(ZeRGAN)。在该方法中,零参考表示它不需要使用成对的缩小尺度图像或未成对的全尺度图像进行训练。为了得到准确的融合结果,我们在一组多尺度生成器和它们对应的鉴别器之间建立了一个对抗性博弈。通过多尺度生成器,融合的高空间分辨率MS(HRMS)图像逐步从LR MS和PAN图像产生,而鉴别器的目的是区分HRMS图像和PAN图像之间的空间信息的差异。换句话说,在优化ZeRGAN之后,从LR MS和PAN图像生成HR MS图像。此外,我们构建了一个非参考损失函数,包括对抗性损失,空间和光谱重建损失,空间增强损失和平均恒定性损失。通过最小化总损失,可以有效地增强HRMS图像中的空间细节。在不同卫星采集的数据集上进行了大量的实验。

INTRODUCTION

近年来,不同的地球观测卫星,如QuickBird,GeoEye-1和WorldView-2收集了大量的遥感图像。这些卫星可以同时获取低空间分辨率多光谱图像和全色图像。目前,所捕获的图像已广泛且成功地用于目标发现、土地覆盖分析和环境监测。然而,由于空间和光谱分辨率之间的固有权衡,难以获得上述卫星的高空间和光谱分辨率MS(HR MS)图像。一方面,LR MS图像包含丰富的光谱信息,但空间分辨率低于PAN图像。另一方面,PAN图像仅由一个高空间分辨率带组成。因此,通过将LR MS图像中的光谱信息与PAN图像中的空间细节整合在一起,应用图像融合(也称为泛锐化)来产生融合的HR MS图像。
在过去的二十年中,已经提出并开发了各种算法来科普全色锐化任务。它们可以分为四种类型:1)组分替代(CS)方法; 2)多分辨率分析(MRA)方法; 3)基于退化模型(DM)的方法;以及4)基于深度神经网络(DNN)的方法。CS方法因其原理简单、实现速度快而得到了广泛的应用。他们将插值的LR MS图像投影到一个新的域中以估计合适的空间分量。然后用PAN图像代替空间分量,并通过相应的逆投影生成融合的HR MS图像。例如,在这种情况下使用的典型变换是强度-色调-饱和度(IHS)变换、主成分分析(PCA)和Gram-Schmidt(GS)变换。此外,提出了频带相关空间细节(BDSD)算法,以更准确地估计增益参数。然而,由于在图像之间考虑了全局变换,因此在融合结果中产生了显著的光谱失真。
基于MRA的方法假设要添加到LR MS图像中的空间信息是从PAN图像中获取的,这被称为结构注入空间分辨率改善(ARSIS)。在这些方法中,空间细节的提取和注入增益的计算对融合结果有重要影响。通过许多MRA工具提取空间细节,例如contourlet和广义拉普拉斯金字塔。Otazu等人提出了一种加性小波亮度比例(AWLP)方法来估计PAN图像中的高频分量。由于只有PAN图像的空间细节被注入到LR MS图像中,因此基于MRA的融合结果在光谱保真度方面具有良好的性能。
基于DM的方法假设所观察到的LR MS和PAN图像分别是空间域和谱域中的HR MS图像的退化版本。例如,Li和Yang通过将空间和光谱DM视为测量矩阵,将图像融合任务重新表述为压缩感知问题。此外,融合模型通过其他有效先验进行正则化,例如稀疏性,非负性和低秩先验。虽然这些方法在空间和光谱信息保持方面表现良好,但它们的计算复杂度远高于前两类方法。
如今,DNN已经在各个领域取得了巨大的成功,还被用于全息锐化。例如,Huang等人采用堆叠式改进稀疏去噪自动编码器进行全息锐化。Masi等人受文献[24]中超分辨率模型的启发,提出了一种基于卷积神经网络(CNN)的全息锐化方法–PNN。在[25]中,PANet是通过将特定问题的先验与残差网络(ResNet)相结合而建立的。该算法能较好地保持融合图像的光谱和空间保持性。随后,Fu等人引入了分组多尺度扩张网络,以提高空间信息的多尺度表示能力。Zhang等人提出了一种双向金字塔网络,将PAN图像中的空间细节逐层注入LR MS图像中。在[29]中,在分组贴片上构建了堆叠稀疏自动编码器。根据这些补丁的几何结构,他们被分类,然后送入自动编码器。此外,生成对抗网络(GAN)也被用于融合LR MS和PAN图像。例如,Liu等人首先利用GAN生成融合图像,然后在[32]中扩展。然后,Ma等人采用两个鉴别器来保持融合图像中的空间和光谱信息,这可以避免在训练期间需要HR MS图像。此外,在MDSSC-GAN中使用了生物多样性框架。在这种方法中,第一个滤波器由图像的亮度和近红外波段馈送,而第二个滤波器的输入是光谱分量的级联。在[35]中,提出了一种基于无监督GAN的方法,包括监督预训练和无监督微调。然而,基于DNN的泛锐化方法可能倾向于过拟合成对的训练数据。因此,当分析由其他卫星获得的新数据时,泛化能力降低。此外,需要考虑与训练数据有关的两个问题。一方面,大多数基于DNN的泛锐化方法通常使用成对图像进行训练,如图1(a)所示。但是,HR MS图像在真实的场景中不可用。因此,成对图像由空间退化后的LR MS和PAN图像的缩小比例版本组成。因此,原始LR MS图像直接被视为参考数据。然而,在全尺寸图像的空间细节不能有效地从缩小规模的图像对学习。另一方面,一些基于GAN的泛锐化方法被提出用于全尺度图像的显式训练,其中包含原始尺度的LR MS和PAN图像。它们也被称为未配对图像,如图1(b)所示。然而,这些网络需要重复训练,以获得理想的结果,因为不同的卫星图像之间的不同分布。此外,它们需要大量的训练数据。在这里插入图片描述
基于这两个方面,本文提出了一种基于GAN的零参考GAN(ZeRGAN)方法,用于由PAN图像锐化LR MS图像。如图1(c)所示,ZeRGAN不需要任何成对的缩小比例图像或未成对的全比例图像进行训练。因此,在对该方法的损失函数进行优化后,可以直接由多尺度发生器得到融合图像。特别是,我们采用了一组级联的多尺度生成器,逐步增加MS图像中的空间信息,同时保留光谱信息。在每个尺度上,残差学习被嵌入到生成器中,以改善中间HR MS图像中的空间细节。同时,在相同的尺度下,相应的缩放被用来进一步区分中间和真实的PAN图像中的空间信息。通过光谱响应滤波(SSF),从中间HR MS图像生成中间PAN图像。此外,为了确保零参考训练的融合性能,我们设计了一个无监督损失函数,其中包含对抗损失,空间和光谱重建损失,空间增强损失和平均恒定性损失,用于在每个尺度上优化生成器和滤波器。实验结果表明,即使没有任何训练集,ZeRGAN仍然具有竞争力的性能相比,依赖于配对或不配对的图像进行训练的方法。

贡献

1)ZeRGAN不需要任何训练数据。通过优化GAN并结合空间和光谱DM,实现了LR MS和PAN图像的融合。一个多尺度生成器架构被用来增强空间细节的LR MS图像协作。
2)一个任务驱动的非参考损失函数制定了一个有效的措施,融合图像中的空间和光谱信息,这减轻了大量的训练数据的需要。
3)对于光谱保存,我们引入了一个新的损失项,平均恒定性损失,它假设LR MS图像中的频带的平均值应相应地等于HR MS图像中的频带。

GENERATIVE ADVERSARIAL NETWORKS

自从GAN由Goodfellow等人提出以来由于其强大的生成能力,在图像处理和图像合成等各个领域的性能都有了显着的提高。GAN主要通过最小-最大对抗游戏学习生成器G和BND。生成器G可以学习数据分布,并创建真实的样本来欺骗CMDD。相反地,CNOD的目的是分类样本是由生成器G合成的还是来自真实的数据。然后,上述两个玩家的游戏可以在数学上表示为:在这里插入图片描述
然而,原始GAN遭受训练不稳定性。然后,提出了深度卷积GAN(DCGAN)来稳定GAN的训练,其中生成器和卷积神经网络都由CNN组成。Mao等人在最小二乘损失的约束下,惩罚假样本的分布更接近真实的数据的分布。Wasserstein GAN(WGAN)采用具有更好理论特性的Wasserstein距离来衡量真实的和虚假数据之间的差异。然而,WGAN的收敛是缓慢的,有时不稳定。因此,Gulrajani等人提出了WGAN-GP损失并引入梯度惩罚来直接保证Lipschitz条件,其目标函数为
在这里插入图片描述

PROPOSED METHOD

在这里插入图片描述

ZeRGAN的框架如图2所示,其中生成器和鉴别器分别主要负责注入和区分HR MS图像中的真实空间信息。更具体地说,一系列的生成器被设计为增强在不同尺度的中间HR MS图像的空间细节,同时保留光谱信息。此外,在每个尺度上的缩放还负责中间PAN图像和真实的PAN图像中的空间信息的一致性。通过SSF从中间HR MS图像产生中间PAN图像。此外,通过以不同比率下采样原始PAN图像来合成对应于不同尺度的真实的PAN图像。此外,一个无监督的损失来自空间光谱模型和先验知识,使零参考训练成为可能。虽然已经提出了许多基于GAN的泛锐化方法,例如PSGAN和MDSSC-GAN,但这些方法需要大量的成对图像进行训练。所提出的ZeRGAN不需要任何配对或未配对的数据,这消除了训练数据的问题。此外,现有的基于GAN的方法通常使用单个生成器来合成融合结果。ZeRGAN提出了由多个生成器组成的多尺度框架,从粗到细生成融合图像,以提高融合效果。

Multiscale Generator

多尺度发生器由L个级联的生成器组成,其中生成器Gl在尺度l处的输出是Hl R r l M × r l N × B R^{r_l M×r_l N×B} RrlM×rlN×B,生成器Gl+1在尺度l + 1处的输入。M × N × B是原始LR MS图像H0的大小。rl是H0和H1之间的空间分辨率比。因此,我们可以将LR MS图像在不同尺度下的连续增强写为:在这里插入图片描述
其中Hl-1和Pl都被馈送到发生器Gl。通过下采样从原始PAN图像生成Pl。注意,Pl的大小与Hl的大小一致。然后,期望的HR MS图像是HL R r l M × r l N × B R^{r_l M×r_l N×B} RrlM×rlN×B,即GL在尺度L下的输出。通常,在全色锐化任务中rL等于4。在这里插入图片描述
不同规模的生成器的架构如图3所示。对于生成器的输入,我们首先通过双三次算子将MS图像Hl-1直接上采样到真实的PAN图像P1的大小。然后,将上采样的MS图像与PAN图像连接在一起作为生成器的输入。生成器由五个卷积层组成。过滤器大小为3 × 3,步长为1。对于前四个卷积层,滤波器的数量设置为n。在最后一个卷积层中使用了四个滤波器。Leaky ReLU激活函数应用于前四个卷积层。批量归一化(BN)也被级联以防止梯度消失。为了充分利用以前的功能,在生成器中引入了密集连接。通过密集连接,可以加强不同层中的特征传播,从而有效地将空间细节注入HRMS图像。

Spatial Discriminator

在ZeRGAN的架构中,鉴别器{D1,D2,.,DL }被设计为由于SSF的引入而间接地区分HR MS图像中的空间信息。SSF被建模为在这里插入图片描述
其中 H b H^b Hbl是Hl的第b个频带,并且ωb是固定的光谱响应权重。经由SSF从MS图像Hl-1产生中间PAN图像~P 1
在这里插入图片描述
为了有效地捕获真实的和中间PAN图像的分布之间的差异,构造完全卷积网络,其结构在图4中示出。卷积Dl由五个卷积层组成,其中前四层中的每一层都包含n个大小为3 × 3的内核。最后一个卷积层只包含一个大小为3 × 3的滤波器。此外,前四个卷积层与BN和Leaky ReLU连接。完全卷积设置用于有效地对图像中的空间细节进行建模。在所提出的方法中,所有不同尺度的所有鉴别器共享相同的架构。

Nonreference Loss Function

在ZeRGAN中,多尺度生成器和鉴别器是通过无监督训练过程依次学习的。在所提出的方法中,生成的HR MS图像不仅要欺骗鉴别器,而且要满足与源图像的退化关系和其他约束。因此,我们在生成器上施加额外的损失以实现有效的学习。考虑以下损失来训练所提出的模型。
Spatial and Spectral Reconstruction Losses: 通常,LR MS和PAN图像分别被视为HR MS图像的空间和光谱退化结果。具体地,尺度l的空间和光谱观测模型被定义为:在这里插入图片描述
滤波器是钟形的,可以近似为高斯滤波器[46]。n1和n2是加性噪声。因此,空间和光谱退化损失可以公式化为:在这里插入图片描述
其中α和β是正则化参数。(7)中的两个约束分别是空间保真度项和光谱保真度项。然后, L l L^{l} Llsr可以保留空间和光谱信息,并在这两项之间进行折衷,由α和β值进行调整。
1) Spatial Enhancement Loss: 对于不同波段的MS图像,由于其光谱响应,边缘或纹理有明显的差异。使用相同的空间增强策略将导致不同频带上的伪影。在所提出的方法中,假设Hl中的高频信息遵循与(6)相同的谱退化关系,其类似地表示为在这里插入图片描述
其中▽梯度算子用于高频信息提取。然后,可以通过以下方式实现空间增强:在这里插入图片描述
2) Average Constancy Loss: 受[47]中的颜色恒定性损失的启发,我们提出了平均恒定性损失来保留HR MS图像中的光谱信息。假设LR MS图像中的谱带的平均值应相应地等于HR MS图像中的谱带的平均值。通过这一假设,LR MS图像的波段之间的关系可以继承到HR MS图像的波段之间的关系。然后,平均恒定性损失被建模为在这里插入图片描述
3) Adversarial Loss: 在所提出的方法中,利用从Hl生成的中间PAN图像~ Pl来欺骗鉴别器Dl。为了保证训练的稳定性,该方法考虑了WGAN-GP损失在这里插入图片描述
将上述所有损失合并在一起,第l级的总损失总结为:在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1155434.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习之基于ResNet18的神经网络水果分类系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介二、功能三、神经网络水果分类系统四. 总结 一项目简介 基于ResNet18神经网络的水果分类系统是一个利用深度学习技术进行水果图像分类的系统。下面是该系统…

WOS与CNKI数据库的citespace分析教程及常见问题解决

本教程为面向新手的基于citespace的数据可视化教程,旨在帮助大家更快了解行业前沿的研究内容。 获取最新版本的citespace软件 在citespace官网下载最新的版本(如果是老版本,可能会提示让你去官网更新为最新版,老版本不再提供服务…

【Linux】开发工具——vim多模式编辑器的入土设置sudoers白名单

个人主页点击直达:小白不是程序媛 Linux系列专栏:Linux被操作记 目录 前言: 基本概念 vim基本操作 [正常模式]切换至[插入模式] [插入模式]切换至[正常模式] [正常模式]切换至[末行模式] 三种模式的切换关系图 vim命令模式命令集 进…

Redis入门01-简单了解

目录 Redis的发展历史 特性简介 数据类型 内存存储与持久化 功能丰富 简单稳定 应用场景 为啥用Redis Redis的发展历史 Redis(Remote Dictionary Server)是一个高性能的键值存储系统,通常用作缓存、消息队列和分布式数据存储的解决方…

【React】03.脚手架的进阶应用

文章目录 暴露webpack配置暴露前后的区别config文件夹:scripts文件夹:package.json 常见的配置修改1.把sass改为less2.配置别名3.修改域名和端口号4.修改浏览器兼容5.处理Proxy跨域 2023年最新珠峰React全家桶【react基础-进阶-项目-源码-淘系-面试题】 …

uniapp如何使用mumu模拟器

模拟器安装 下载地址:MuMu模拟器 模拟器相关设置 1.在设置-显示中选中手机版,设置手机分辨率 2.设置-关于手机-版本号快速点击,将其设置为开发者模式 3.选择多开器 4.打开hbuilderx,找到adb设置 5.配置adb路径及端口号&#x…

网络爬虫适合什么代理IP?如何使用?

在互联网时代之下,大数据对各行各业的发展有着重要的推动作用,而说到数据采集,必不可少的就是去使用爬虫工作。 一、什么是网络爬虫? 它是一种按照一定的规则自动游览、检索网页信息的程序或者脚本,通过自动请求目标…

《鸿门宴》文

鸿门宴 【作者】司马迁 【朝代】汉 沛公军霸上,未得与项羽相见。沛公左司马曹无伤使人言于项羽曰:“沛公欲王关中,使子婴为相,珍宝尽有之。”项羽大怒曰:“旦日飨士卒,为击破沛公军!”当是时&a…

SpringCloud Gateway实现请求解密和响应加密

文章目录 前言正文一、项目简介二、核心代码2.1 自定义过滤器2.2 网关配置2.3 自定义配置类2.4 加密组件接口2.5 加密组件实现,AES算法2.6 启动类,校验支持的算法配置 三、请求报文示例四、测试结果4.1 网关项目启动时4.2 发生请求时 前言 本文环境使用比…

【C++的OpenCV】第十五课-OpenCV的绘图工具(rectangle、circle、line、polylines、putText)常用方法简介

🎉🎉🎉 欢迎各位来到小白 p i a o 的学习空间! \color{red}{欢迎各位来到小白piao的学习空间!} 欢迎各位来到小白piao的学习空间!🎉🎉🎉 💖 C\Python所有的入…

【错误解决方案】ModuleNotFoundError: No module named ‘xgboost‘

1. 错误提示 在尝试导入名为xgboost的模块时出现了ModuleNotFoundError。 错误提示:ModuleNotFoundError: No module named xgboost 这个错误通常意味着Python环境中没有安装你试图导入的模块。 2. 解决方案 安装xgboost模块即可解决上述问题。 可以通过Python…

企业多部门VLAN间互访部署实战

1. 二层VLAN技术部署回顾; 2. 三层交换机上如何部署VLAN? 3. 部署VLAN的过程中有哪些注意事项? -- VLAN技术 - 虚拟局域网 -- 局域网 - 通过交换机连接的网络 -- VLAN - 把一个大的局域网 做一个分割 -- 常见局域网的问题&a…

Docker容器引擎

目录 一、Docker概述 二、Docker与虚拟机的区别 三、namespace 四、Docker核心概念 五、Docker部署 一、Docker概述 Docker是一个开源的应用容器引擎,基于go语言开发并遵循了apache2.0协议开源。 Docker是在Linux容器里运行应用的开源工具,是一种轻…

10.2 一文读懂SPI与DSPI、QSPI、OSPI关系与异同

本文主要内容: 1 SPI与DSPI、QSPI、OSPI定义 2 SPI与xSPI对比 3 常用的nor flash 4 驱动架构 5 xSPI镜像烧录 1 SPI与DSPI、QSPI、OSPI定义 1)标准SPI 通过说的SPI,称为标准SPI,是一种串行外设接口,通过有4根线控制,CLK、CS、MISO、MOSI,可工作于4种模式,一般是主机…

透视2023,如何看清中国SaaS的未来之路?

导读:什么是更适合中国市场的SaaS道路? 如果用一个关键词概括2023年的SaaS产业,很多人会想到:难。 在过去一年时间内,SaaS产业投融资环境巨变,一级市场投融资笔数和金额骤减。根据IT桔子数据,20…

搭上直播快车,文旅迎来了更大爆发期?

“直播累计观看人数1083万人次,同期在线峰值10万人,抖音平台销售额800万元,荣登食遍天下榜第一名”。 10月28日,“东方甄选看世界”无锡专场直播落幕,又创造了新成绩,“文旅直播”这一新带货模式的发展可行…

飞鹅打印机使用注意事项:打印小票(云播报打印机)FP-V58-W(c)

文章目录 引言I 基础操作1.1 设置Wi-Fi1.2 在机器内预先内置logo 引言 应用场景: 云播报打印机:支持第三方软件开发商,接单后实现智能语音播报,可播报订单信息、打印订单小票。 http://www.feieyun.com/open/index.html 飞鹅对…

实用的文案生成工具、数字人生成工具、ai配音生成、音效下载、图片颜色读取器、自动生成logo 在线网站【持续更新】

一、文案生成工具 传送门 传送门 二、数字人 传送门 三、ai朗读 真人付费 传送门 传送门 四、音效下载 传送门 五、图片颜色读取器 传送门 六、自动生成logo 传送门 七、图片转 BASE64 传送门 ps:pr绿幕扣除 效果中搜索超级键 2. 拖动到轨道中 3. 点击左边主…

项目管理之项目工作的质量管理

在当今的商业环境中,质量成为了企业成功的关键因素之一。项目管理作为企业管理的重要手段,如何管理项目工作的质量也成为了项目管理的重要内容。本文将结合项目管理方法论,探讨如何管理项目工作的质量,以期为项目经理提供一些参考…

leetCode 137. 只出现一次的数字 II(拓展篇) + 模5加法器 + 真值表(数字电路)

leetCode 137. 只出现一次的数字 II 题解可看我的往期文章 leetCode 137. 只出现一次的数字 II 位运算 模3加法器 真值表(数字电路) 有限状态机-CSDN博客https://blog.csdn.net/weixin_41987016/article/details/134138112?spm1001.2014.3001.5501…