Pod资源限制与探针

news2025/1/13 11:46:42

目录

资源限制

资源限制概述

资源单位

示例

示例1

示例2

探针 

探针的三种规则

Probe支持三种检查方法

示例

示例1:exec方式

示例2:httpGet方式

示例3:tcpSocket方式

示例4:就绪检测

示例5:就绪检测2

扩展

pod的状态

Container生命周期


资源限制

资源限制概述

当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。

当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。

如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。

如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。


官网示例:
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

Pod 和 容器 的资源请求和限制:
spec.containers[].resources.requests.cpu        //定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory        //定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu            //定义 cpu 的资源上限 
spec.containers[].resources.limits.memory        //定义内存的资源上限

资源单位

CPU 资源单位

CPU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。
Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。
Kubernetes 不允许设置精度小于 1m 的 CPU 资源。 

内存 资源单位 
内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。
如:1KB=10^3=1000,1MB=10^6=1000000=1000KB,1GB=10^9=1000000000=1000MB
1KiB=2^10=1024,1MiB=2^20=1048576=1024KiB

PS:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些。

https://kubernetes.io/zh-cn/docs/concepts/configuration/manage-resources-containers/

示例

示例1

vim pod1.yaml

apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: app
    image: images.my-company.example/app:v4
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: log-aggregator
    image: images.my-company.example/log-aggregator:v6
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"

此例子中的 Pod 有两个容器。每个容器的 request 值为 0.25 cpu 和 64MiB 内存,每个容器的 limit 值为 0.5 cpu 和 128MiB 内存。那么可以认为该 Pod 的总的资源 request 为 0.5 cpu 和 128 MiB 内存,总的资源 limit 为 1 cpu 和 256MiB 内存。

示例2

vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: web
    image: nginx
    env:
    - name: WEB_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: db
    image: mysql
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "abc123"
    resources:
      requests:
        memory: "512Mi"  128
        cpu: "0.5"
      limits:
        memory: "1Gi"    256
        cpu: "1"
kubectl apply -f pod2.yaml
kubectl describe pod frontend

kubectl get pods -o wide

kubectl describe nodes node02                #由于当前虚拟机有2个CPU,所以Pod的CPU Limits一共占用了50%


 

探针 

健康检查:又称为探针(Probe) 
探针是由kubelet对容器执行的定期诊断。

探针的三种规则

●livenessProbe :判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。

●readinessProbe :判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service 址endpoints 中剔除删除该Pod的IP地。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。

●startupProbe(这个1.17版本增加的):判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
#注:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。

Probe支持三种检查方法

●exec :在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。

●tcpSocket :对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。

●httpGet :对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的

每次探测都将获得以下三种结果之一:
●成功:容器通过了诊断。
●失败:容器未通过诊断。
●未知:诊断失败,因此不会采取任何行动


官网示例:
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

示例

示例1:exec方式

apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-exec
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/busybox
    args:  
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      failureThreshold: 1
      initialDelaySeconds: 5
      periodSeconds: 5

#initialDelaySeconds:指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0。
#periodSeconds:指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。
#failureThreshold: 当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。
#timeoutSeconds:探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行,甚至可能超过所配置的限期,直到返回结果为止。)

可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它。

vim exec.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-exec
  namespace: default
spec:
  containers:
  - name: liveness-exec-container
    image: busybox
    imagePullPolicy: IfNotPresent
    command: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]
    livenessProbe:
      exec:
        command: ["test","-e","/tmp/live"]
      initialDelaySeconds: 1
      periodSeconds: 3

kubectl create -f exec.yaml

kubectl describe pods liveness-exec

kubectl get pods -w

示例2:httpGet方式

apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-http
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/liveness
    args:
    - /server
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
        httpHeaders:
        - name: Custom-Header
          value: Awesome
      initialDelaySeconds: 3
      periodSeconds: 3

在这个配置文件中,可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务(服务会监听 8080 端口)发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码,则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码,则 kubelet 会杀死这个容器并且重新启动它。

任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。

vim httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-httpget
  namespace: default
spec:
  containers:
  - name: liveness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10

kubectl create -f httpget.yaml

kubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods

示例3:tcpSocket方式

apiVersion: v1
kind: Pod
metadata:
  name: goproxy
  labels:
    app: goproxy
spec:
  containers:
  - name: goproxy
    image: k8s.gcr.io/goproxy:0.1
    ports:
    - containerPort: 8080
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 10
    livenessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 15
      periodSeconds: 20

这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。

vim tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:
  name: probe-tcp
spec:
  containers:
  - name: nginx
    image: soscscs/myapp:v1
    livenessProbe:
      initialDelaySeconds: 5
      timeoutSeconds: 1
      tcpSocket:
        port: 8080
      periodSeconds: 10
      failureThreshold: 2

kubectl create -f tcpsocket.yaml

kubectl exec -it probe-tcp  -- netstat -natp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name    
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      1/nginx: master pro

kubectl get pods -w
NAME        READY   STATUS    RESTARTS   AGE
probe-tcp   1/1     Running             0          1s
probe-tcp   1/1     Running             1          25s       #第一次是 init(5秒) + period(10秒) * 2
probe-tcp   1/1     Running             2          45s       #第二次是 period(10秒) + period(10秒)  重试了两次
probe-tcp   1/1     Running             3          65s


示例4:就绪检测

vim readiness-httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: readiness-httpget
  namespace: default
spec:
  containers:
  - name: readiness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index1.html
      initialDelaySeconds: 1
      periodSeconds: 3
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10

kubectl create -f readiness-httpget.yaml

//readiness探测失败,无法进入READY状态
kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   0/1     Running   0          18s

kubectl exec -it readiness-httpget sh
 # cd /usr/share/nginx/html/
 # ls
50x.html    index.html
 # echo 123 > index1.html 
 # exit

kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          2m31s

kubectl exec -it readiness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          4m10s
readiness-httpget   0/1     Running   1          4m15s


示例5:就绪检测2

vim readiness-myapp.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp1
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp2
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp3
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Service
metadata:
  name: myapp
spec:
  selector:
    app: myapp
  type: ClusterIP
  ports:
  - name: http
    port: 80
    targetPort: 80
kubectl create -f readiness-myapp.yaml

kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
pod/myapp1   1/1     Running   0          3m42s   10.244.2.13   node02   <none>           <none>
pod/myapp2   1/1     Running   0          3m42s   10.244.1.15   node01   <none>           <none>
pod/myapp3   1/1     Running   0          3m42s   10.244.2.14   node02   <none>           <none>

NAME                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE     SELECTOR
......
service/myapp        ClusterIP   10.96.138.13   <none>        80/TCP    3m42s   app=myapp

NAME                   ENDPOINTS                                      AGE
......
endpoints/myapp        10.244.1.15:80,10.244.2.13:80,10.244.2.14:80   3m42s

kubectl exec -it pod/myapp1 -- rm -rf /usr/share/nginx/html/index.html

//readiness探测失败,Pod 无法进入READY状态,且端点控制器将从 endpoints 中剔除删除该 Pod 的 IP 地址
kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
pod/myapp1   0/1     Running   0          5m17s   10.244.2.13   node02   <none>           <none>
pod/myapp2   1/1     Running   0          5m17s   10.244.1.15   node01   <none>           <none>
pod/myapp3   1/1     Running   0          5m17s   10.244.2.14   node02   <none>           <none>

NAME                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE     SELECTOR
......
service/myapp        ClusterIP   10.96.138.13   <none>        80/TCP    5m17s   app=myapp

NAME                   ENDPOINTS                       AGE
......
endpoints/myapp        10.244.1.15:80,10.244.2.14:80   5m17s


//启动、退出动作

vim post.yaml
apiVersion: v1
kind: Pod
metadata:
  name: lifecycle-demo
spec:
  containers:
  - name: lifecycle-demo-container
    image: soscscs/myapp:v1
    lifecycle:   #此为关键字段
      postStart:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the postStart handler >> /var/log/nginx/message"]      
      preStop:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the poststop handler >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  initContainers:
  - name: init-myservice
    image: soscscs/myapp:v1
    command: ["/bin/sh", "-c", "echo 'Hello initContainers'   >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  volumes:
  - name: message-log
    hostPath:
      path: /data/volumes/nginx/log/
      type: DirectoryOrCreate

kubectl create -f post.yaml

kubectl get pods -o wide
NAME             READY   STATUS    RESTARTS   AGE    IP            NODE     NOMINATED NODE   READINESS GATES
lifecycle-demo   1/1     Running   0          2m8s   10.244.2.28   node02   <none>           <none>

kubectl exec -it lifecycle-demo -- cat /var/log/nginx/message
Hello initContainers
Hello from the postStart handler

//在 node02 节点上查看
[root@node02 ~]# cd /data/volumes/nginx/log/
[root@node02 log]# ls
access.log  error.log  message
[root@node02 log]# cat message 
Hello initContainers
Hello from the postStart handler
#由上可知,init Container先执行,然后当一个主容器启动后,Kubernetes 将立即发送 postStart 事件。

//删除 pod 后,再在 node02 节点上查看
kubectl delete pod lifecycle-demo

[root@node02 log]# cat message 
Hello initContainers
Hello from the postStart handler
Hello from the poststop handler
#由上可知,当在容器被终结之前, Kubernetes 将发送一个 preStop 事件。

扩展

pod的状态

1、pending:pod已经被系统认可了,但是内部的container还没有创建出来。这里包含调度到node上的时间以及下载镜像的时间,会持续一小段时间。

2、Running:pod已经与node绑定了(调度成功),而且pod中所有的container已经创建出来,至少有一个容器在运行中,或者容器的进程正在启动或者重启状态。--这里需要注意pod虽然已经Running了,但是内部的container不一定完全可用。因此需要进一步检测container的状态。

3、Succeeded:这个状态很少出现,表明pod中的所有container已经成功的terminated了,而且不会再被拉起了。

4、Failed:pod中的所有容器都被terminated,至少一个container是非正常终止的。(退出的时候返回了一个非0的值或者是被系统直接终止)

5、unknown:由于某些原因pod的状态获取不到,有可能是由于通信问题。 一般情况下pod最常见的就是前两种状态。而且当Running的时候,需要进一步关注container的状态

Container生命周期

1、Waiting:启动到运行中间的一个等待状态。

2、Running:运行状态。

3、Terminated:终止状态。 如果没有任何异常的情况下,container应该会从Waiting状态变为Running状态,这时容器可用。

但如果长时间处于Waiting状态,container会有一个字段reason表明它所处的状态和原因,如果这个原因很容易能标识这个容器再也无法启动起来时,例如ContainerCannotRun,整个服务启动就会迅速返回。(这里是一个失败状态返回的特性,不详细阐述)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1154899.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue-resource发送数据请求

vue-resource是Vue用于发送数据请求的一个插件库&#xff0c;在Vue1.0版本时使用比较频繁&#xff0c;现在Vue作者更支持使用axios进行数据发送。 一、安装vue-resource库 npm i vue-resource 二、使用vue-resource插件 使用插件之前需要先对插件进行引入 三、使用$http发送…

C++设计模式_22_Chain of Resposibility 职责链(理解,已过时)

Chain of Resposibility 职责链也是属于“数据结构”模式。 职责链在今天整个软件框架中应用确实不多&#xff0c;甚至你已经在运用链表的逻辑处理程序&#xff0c;但是可能并不意识到它是职责链的模式&#xff0c;这不重要。 文章目录 1. 动机( Motivation )2. 模式定义3. Cha…

2. PPT提高效率的快捷键

2. PPT提高效率的快捷键 1、SHIFT家族 水平垂直移动 用鼠标单击拖动形状总会有位置的误差&#xff0c;要后续调整&#xff0c;怎样保持在水平上移动呢&#xff1f; 按住Shift&#xff0c;鼠标拖动形状 等比例放大和缩小 在放大矩形时&#xff0c;如果原先是个有比例的形状…

python:计算遥感时间序列数据的最大值所对应索引的影像(最大值所对用年份/day of year-DOY)

作者:CSDN @ _养乐多_ 本文将介绍使用python编程语言,进行遥感数据时间序列最大值所对应的影像索引的代码。代码中使用了numpy和gdal,通过numpy广播机制实现时间序列最大值所对应的影像索引的计算,并以NDVI时间序列数据为例。代码方便易运行,逻辑简单,速度快。只需要输入…

第46天:CSS选择器、css属性、盒子模型及浮动

CSS选择器 分组和嵌套 分组 分组选择器使用逗号隔开&#xff0c;所有的选择器都是并列的。 当多个元素的样式相同的时候&#xff0c;我们没有必要重复地为每个元素都设置样式&#xff0c;我们可以通过在多个选择器之间使用逗号分隔的分组选择器来统一设置元素样式。 div, p {c…

企业计算机电脑中了locked勒索病毒怎么办,勒索病毒解密,数据恢复

网络技术的不断发展&#xff0c;为我们的企业带来了很大的便利&#xff0c;大部分企业都会选择合适的办公软件系统&#xff0c;方便自身的生产与运营。近期&#xff0c;网络上的locked勒索病毒又开始攻击企业的计算机服务器了&#xff0c;经过10月份云天数据恢复中心对企业数据…

【Postgres】Postgres常用命令

文章目录 1、导出数据库某张表2、导入某张表到数据库3、查看数据库占用磁盘页数情况4、查看数据库大小5、查看数据表大小6、查看索引大小7、对数据库中表索引按照大小排序8、对数据库中表按照大小排序9、回收空间&#xff08;建议先回收指定表&#xff09;10、设置主键自增序列…

ASCB1系列智能微型断路器在科技馆中的应用-安科瑞黄安南

【摘要】&#xff1a;安科瑞电气厂家直供黄安南1876-15//06-237&#xff0c;ASCB1系列智能微型断路器是安科瑞电气股份有限公司全新推出的智慧用电产品&#xff0c;产品由智能微型断路器与智能网关两部分组成&#xff0c;可用于对用电线路的关键电气因素&#xff0c;如电压、电…

[SWPUCTF 2021 新生赛]hardrce_3 无字母rce 自增

这里是过滤了 取反等符号 所以考虑自增 <?php header("Content-Type:text/html;charsetutf-8"); error_reporting(0); highlight_file(__FILE__); if(isset($_GET[wllm])) {$wllm $_GET[wllm];$blacklist [ ,\^,\~,\|];foreach ($blacklist as $blackitem){if …

轧钢测径仪在螺纹钢负公差轧制中的四大作用!

螺纹钢为什么要进行负公差轧制&#xff1f; 在标准允许范围内&#xff0c;越接近负公差&#xff0c;那么在合格规范内&#xff0c;所损耗的原材料越少&#xff0c;而螺纹钢轧制速度快&#xff0c;更是以吨的量进行成交&#xff0c;因此控制的原材料积少成多&#xff0c;对其成本…

深度学习之基于Pytorch卷积神经网络的图像分类系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介二、功能三、图像分类系统四. 总结 一项目简介 基于PyTorch卷积神经网络的图像分类系统是一种应用深度学习技术来实现图像分类任务的系统。本摘要将对该系统…

MongoDB——MongoDB删除系统自带的local数据库

一、MongoDB删除系统自带的local数据库 1.1、linux环境进入mongo客户端 输入 mongo 命令&#xff0c;进入命令行客户端 进入admin库&#xff0c;并登录&#xff0c;查看所有数据库 #进入admin库 use admin #并登录admin db.auth("username","password")…

KanTts最小安装-ubuntu

为什么选它&#xff1f; 克隆有很多&#xff0c;为什么选它&#xff0c;它是中国人做的&#xff0c;阿里达摩院&#xff0c;5分钟音频数据集就够了。 国内做的有什么好处&#xff0c;因为大家都是中国人&#xff0c;说的是中国话&#xff0c;技术最大的难题不是基础&#xff…

Java基于SpringBoot的线上考试系统

1 摘 要 基于 SpringBoot 的在线考试系统网站&#xff0c;功能模块具有课程管理、成绩管理、教师管理、学生管理、考试管理以及基本信息的管理等&#xff0c;通过将系统分为管理员、授课教师以及学生&#xff0c;从不同的身份角度来对用户提供便利&#xff0c;将科技与教学模式…

SeaTunnel: 下一代超高性能分布式海量数据集成工具 | 开源日报 No.65

hyprwm/Hyprland Stars: 11.3k License: BSD-3-Clause Hyprland 是一个基于 wlroots 的动态平铺 Wayland 合成器&#xff0c;外观精美而不失功能。它提供了最新的 Wayland 特性&#xff0c;高度可定制化&#xff0c;并具有所有令人眼花缭乱的视觉效果、功能强大的插件、易用 I…

读取谷歌地球的kml文件中的经纬度坐标

最近我在B站上传了如何获取研究边界的视频&#xff0c;下面分享一个可以读取kml中经纬度的matlab函数&#xff0c;如此一来就可以获取任意区域的经纬度坐标了。 1.谷歌地球中划分区域 2.matlab读取kml文件 function [sname,lon,lat] kml2xy(ip_kml) % ip_kml ocean_distubu…

钡铼技术助力ARM工控机在智慧交通中的创新应用

在交通运输领域&#xff0c;钡铼技术ARM工控机可以实现以下功能&#xff1a; 实时监控和管理&#xff1a;利用钡铼技术ARM工控机&#xff0c;可以对交通运输中的车辆、船只、飞机等进行实时监测和管理&#xff0c;帮助调度员提高车辆调度和路线规划的准确性和效率。 安全保障&…

WebService与RESTful两种接口风格示例

下面我将分别用WebService&#xff08;SOAP&#xff09;和RESTful API的例子来说明它们是如何工作的。 1. WebService (SOAP) 示例&#xff1a; 假设有一个在线计算器服务&#xff0c;它提供了一个加法操作的SOAP WebService。 SOAP请求&#xff08;客户端到服务器&#xff…

Kafka - 3.x offset位移不完全指北

文章目录 offset的默认维护位置消费__consumer_offsets 案例 自动提交offsetCode 手动提交offsetCode 同步提交Code 异步提交 指定offset 消费 &#xff08;auto.offset.reset earliest | latest | none |&#xff09;数据漏消费和重复消费分析 offset的默认维护位置 由于con…

云栖大会所感所想

离云栖大会圆满结束已经过去8天&#xff0c;第一次参加云栖4天时间收获颇丰&#xff0c;很多场景依旧历历在目&#xff0c;彷如昨日。我是从一个从事iava开发的角度&#xff0c;带着提升自己认知&#xff0c;拓展自己解决问题思路&#xff0c;学习业内人士及前辈的成长历程去参…