目标检测算法改进系列之添加EIOU,SIOU,AlphaIOU,FocalEIOU等

news2024/11/22 11:17:10

YOLOv8添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU等

yolov8中box_iou其默认用的是CIoU,其中代码还带有GIoU,DIoU,文件路径:ultralytics/yolo/utils/metrics.py,函数名为:bbox_iou
在这里插入图片描述

原始代码

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    iou = inter / union

    if GIoU or DIoU or CIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
                    (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squared
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            c_area = cw * ch + eps  # convex area
            return iou - (c_area - union) / c_area  # GIoU
    else:
        return iou  # IoU

代码替换

只需要把上面提及到的这个函数替换成以下代码。

import numpy as np
import torch, math

class WIoU_Scale:
    ''' monotonous: {
            None: origin v1
            True: monotonic FM v2
            False: non-monotonic FM v3
        }
        momentum: The momentum of running mean'''
    
    iou_mean = 1.
    monotonous = False
    _momentum = 1 - 0.5 ** (1 / 7000)
    _is_train = True

    def __init__(self, iou):
        self.iou = iou
        self._update(self)
    
    @classmethod
    def _update(cls, self):
        if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                         cls._momentum * self.iou.detach().mean().item()
    
    @classmethod
    def _scaled_loss(cls, self, gamma=1.9, delta=3):
        if isinstance(self.monotonous, bool):
            if self.monotonous:
                return (self.iou.detach() / self.iou_mean).sqrt()
            else:
                beta = self.iou.detach() / self.iou_mean
                alpha = delta * torch.pow(gamma, beta - delta)
                return beta / alpha
        return 1
    

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps
    if scale:
        self = WIoU_Scale(1 - (inter / union))

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha_ciou = v / (v - iou + (1 + eps))
                if Focal:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoU
                else:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = torch.pow(cw ** 2 + eps, alpha)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIou
                else:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou
            elif SIoU:
                # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
                s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
                s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                rho_x = (s_cw / cw) ** 2
                rho_y = (s_ch / ch) ** 2
                gamma = angle_cost - 2
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                if Focal:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIou
                else:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
            elif WIoU:
                if Focal:
                    raise RuntimeError("WIoU do not support Focal.")
                elif scale:
                    return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051
                else:
                    return iou, torch.exp((rho2 / c2)) # WIoU v1
            if Focal:
                return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoU
            else:
                return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        if Focal:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
        else:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    if Focal:
        return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoU
    else:
        return iou  # IoU

### yolov8
if type(iou) is tuple:
    if len(iou) == 2:
        loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum
    else:
        loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sum
else:
    loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
    
### yolov5
iou = bbox_iou(pbox, tbox[i], CIoU=True)
if type(iou) is tuple:
    if len(iou) == 2:
        lbox += (iou[1].detach().squeeze() * (1 - iou[0].squeeze())).mean()
        iou = iou[0].squeeze()
    else:
        lbox += (iou[0] * iou[1]).mean()
        iou = iou[2].squeeze()
else:
    lbox += (1.0 - iou.squeeze()).mean()  # iou loss
    iou = iou.squeeze()

注意事项

1、Focal_EIoU的思想是可以用作与其他IoU的变种,因此我对里面所有的IoU都支持Focal_EIoU的思想,只需要设定Focal参数为True即可,我自己测试的过程中,除了Focal_SIoU出现loss为inf之外,其他的都正常,不过这个不同的数据集可能出现不一样,具体可以自行测试下。
2、gamma参数是Focal_EIoU中的gamma参数,一般就是为0.5,有需要可以自行更改。
3、alpha参数为AlphaIoU中的alpha参数,默认为1,1的意思就是跟正常的IoU一样,如果想采用AlphaIoU的话,论文alpha默认值为3。(比如我不想使用AlphaIoU的特性,我就把alpha设置为1就可以,如果我想使用AlphaIoU的特性,我可以设置alpha为3)。
4、跟Focal_EIoU一样,我认为AlphaIoU的思想同样可以用在其他的IoU变种上,简单来说就是如果你设置了alpha为3,其他IoU设定的参数(GIoU,DIoU,CIoU,EIoU,SIoU)为False的时候,那就是AlphaIoU,如果你设置了alpha为3,CIoU为True的时候,那就是AlphaCIoU,效果的话就因数据集和模型而已,具体可以自行测试下。
5、想用那个IoU变种,就直接设置参数为True即可。
6、AlphaIoU理论上与Focal_EIoU没有直接的冲突,但是作者这边没有详细测试过,这两者一起用会是什么效果,有兴趣可以自行测试下。

BboxLoss Class中的forward函数修改

除了以上这个函数替换,还需要在ultralytics/yolo/utils/loss.py中BboxLoss Class中的forward函数中修改一下。

原始代码

在这里插入图片描述

具体修改

iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
if type(iou) is tuple:
    loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum
else:
    loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

最后修改参数就在调用bbox_iou中进行修改即可,比如上面的代码就是使用了CIoU,如果你想使用Focal_EIoU可以修改为

iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, EIoU=True, Focal=True) 

YoloV8中在标签分配规则中也有用到bbox_iou的函数,具体路径为:ultralytics/yolo/utils/tal.py的TaskAlignedAssigner class中的get_box_metrics函数
在这里插入图片描述
对于这个,建议就是跟你计算IoU Loss的时候选择一样即可,但是这里不需要开启Focal选项,因为这里只是单纯求交并比。意思就是你在计算IoU Loss的时候,比如选择了Focal=True和CIoU=True,那么在这里你只需要选择CIoU=True即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1147984.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt:关闭对话框,动画实现窗体逐渐缩小到消失

关键技术: 1、使用QPropertyAnimation对象,实现动画效果,逐渐缩小窗体尺寸,以及透明度; 2、在对话框缩小时,要将界面中的控件都隐藏起来,并且将对话框布局的Margin修改成0 代码如下&#xff…

机器学习 | 决策树算法

一、决策树算法概述 1、树模型 决策树:从根节点开始一步步走到叶子节点(决策)。所有的数据最终都会落到叶子节点,既可以做分类也可以做回归。 在分类问题中,表示基于特征对实例进行分类的过程,可以认为是if-then的集合&#xff0…

软件测试项目职责与分工、测试流程

一、项目职责与分工 1、产品经理 ------> 负责设计产品的原型图和PRD。 2、项目经理 ------>负责并保证高质量的产品按时完成和发布的专职管理人员。 3、开发人员 ------> 负责完成公司新产品开发计划;开发人员主要分为 前端开发、后端开发、IOS开发和安…

Linux rm命令:删除文件或目录

当 Linux 系统使用很长时间之后,可能会有一些已经没用的文件(即垃圾),这些文件不但会消耗宝贵的硬盘资源,还是降低系统的运行效率,因此需要及时地清理。 rm 是强大的删除命令,它可以永久性地删除…

搞定蓝牙-第六篇(HID

搞定蓝牙-第六篇(HID) ble与HIDHOGPGAPP与HID ESP32程序分析 ble与HID HOGP 我们发现,电脑连接了蓝牙键盘就可以直接使用了,不需要配置任何东西,那么,这两者是怎么通讯的呢。我们使用的电脑windows系统内…

这个故事有点长 - 舟山

这个故事有点长 - 舟山 👉故事的开始 这是一个很长的故事,到底有多长呢?大概也就有六七年那么长吧。刚来上海时就一直想去看海,后来终于如愿以偿了,具体记不清了,只记得当时坐了地铁,又坐了几个…

TensorRT量化实战课YOLOv7量化:YOLOv7-PTQ量化(一)

目录 前言1. YOLOv7-PTQ量化流程2. 准备工作3. 插入QDQ节点3.1 自动插入QDQ节点3.2 手动插入QDQ节点 前言 手写 AI 推出的全新 TensorRT 模型量化实战课程,链接。记录下个人学习笔记,仅供自己参考。 该实战课程主要基于手写 AI 的 Latte 老师所出的 Tens…

一年一度表白代码(自定义表白)

代码有什么不懂可以私信我 动态画下面的效果图,自定义名字和表白词 源代码 import turtle import time# 画心形圆弧 def hart_arc():for i in range(200):turtle.right(1

一年一度表白代码(发射爱心)

代码有什么不懂可以私信我 动态画下面的效果图,发射爱心,可改名字 源代码 import turtle import time# 画心形圆弧 def hart_arc():for i in range(200):turtle.righ

电源控制系统架构(PCSA)之系统控制处理器

安全之安全(security)博客目录导读 目录 一、系统控制处理器 1、服务 2、可信操作 一、系统控制处理器 SCP是一种基于处理器的能力,为提供电源管理功能和服务提供了一个灵活和可扩展的平台。 在移动系统中,SCP处理器一般是Cortex-M微控制器&#xff…

Visual Studio Code 中安装 DevChat 的体验与评测

Visual Studio Code 中安装 DevChat 的体验与评测 1.前言 在软件开发的过程中,我们常常需要与团队成员进行高效的沟通,而现有的开发工具并未将沟通工具与软件开发环境有效地结合起来。然而,DevChat却为像我们这样的开发者提供了非常便利的解…

nacos切换到mysql数据库(替换掉嵌入式数据库derby)

官网文档:https://nacos.io/zh-cn/docs/v2/guide/admin/deployment.html 1.数据库初始化文件:mysql-schema.sql 找到这个文件直接进行执行 2.修改conf/application.properties文件,增加支持mysql数据源配置(目前只支持mysql&a…

powerjob基于springboot2.1.6.RELEASE版本的问题研究

项目背景:基于第三代框架的集成问题,如果对于powerjob不熟悉的朋友,可以参考官方文档PowerJob 简介 语雀 关于语雀 23 日故障的公告 (qq.com) 简单插一句,针对语雀文档故障的心得,数据恢复,完整性&#…

腾讯云2023年双11活动:云服务器2核2G首年88元,领券最高省9999元!

双11作为全球最大的购物狂欢节,云计算行业也将迎来一场盛大的活动。腾讯云作为云计算领域的领先者,2023年双11期间推出了一系列超值优惠活动,本文将为大家介绍腾讯云2023年11.11云上盛惠活动的亮点和优惠内容。 一、活动地址 活动入口&#…

C++之lambda匿名、using、typedef总结【全】(二百四十九)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…

【图像分类】基于计算机视觉的坑洼道路检测和识别(ResNet网络,附代码和数据集)

写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 本篇博文,我们将使用PyTorch深度学习框架搭建ResNet实现钢轨缺陷识别,附完整的项目代码和数据集,可以说是全网…

BaiChuan-QWen

QWen Tokenizer 选择byte pair encoding (BPE)作为分词方法vacabulary在中文上做了增强,验证增加vocabulary的规模不会为下游任务带来负面影响 Model Positional embedding:选择RoPE,反向更新时选择FP32的精度而不是FP16或BP16&#xff0c…

木疙瘩学习-行为添加与控制

这里面都是一些代码逻辑,但是这个平台让用户0代码实现交互,但是难点是,用户需要有一定的业务逻辑转换程序逻辑思维能力! 注意,舞台上的任何素材都可以参与程序逻辑!前提是我们为素材手动指定名字&#xff…

【详细教程】关于如何使用GitGitHub的基本操作汇总GitHub的密钥配置 ->(个人学习记录笔记)

文章目录 1. Git使用篇1.1 下载安装Git1.2 使用Git 2. GitHub使用篇2.1 如何git与GitHub建立联系呢?2.2 配置公钥 1. Git使用篇 1.1 下载安装Git 点击 官网链接 后,进入Git官网,下载安装包 然后根据系统类型进行下载,一般为wind…

unity3d场景加载

需将场景拖到到file->buildsetting中