Redis(08)| 线程模型

news2025/1/15 19:59:00

一、redis 的线程模型

redis 内部使用文件事件处理器 file event handler,它是单线程的,所以redis才叫做单线程模型。它采用IO多路复用机制同时监听多个 socket,将产生事件的 socket 压入内存队列中,事件分派器根据 socket 上的事件类型来选择对应的事件处理器进行处理。

1.1 文件事件处理器的结构

  • 多个 socket
  • IO 多路复用程序
  • 文件事件分派器
  • 事件处理器(连接应答处理器、命令请求处理器、命令回复处理器)

1.2 线程模型

多个 socket 可能会并发产生不同的操作,每个操作对应不同的文件事件,但是 IO多路复用程序会监听多个 socket,会将产生事件的 socket 放入队列中排队,事件分派器每次从队列中取出一个 socket,根据 socket 的事件类型交给对应的事件处理器进行处理。
在这里插入图片描述

1.3 使用单线程网络模型的好处

避免过多的上下文切换开销

多线程调度过程中必然需要在 CPU 之间切换线程上下文 context,而上下文的切换是有开销的。单线程则可以规避进程内频繁的线程切换开销,因为程序始终运行在进程中单个线程内,没有多线程切换的场景。

避免同步机制的开销

如果 Redis 选择多线程模型,势必涉及到底层数据同步的问题,必然会引入某些同步机制,比如锁,而我们知道 Redis 不仅仅提供了简单的 key-value 数据结构,还有 list、set 和 hash 等等其他丰富的数据结构,而不同的数据结构对同步访问的加锁粒度又不尽相同,可能会导致在操作数据过程中带来很多加锁解锁的开销,增加程序复杂度的同时还会降低性能。

简单可维护

Redis 的作者 Salvatore Sanfilippo (别称 antirez) 对 Redis 的设计和代码有着近乎偏执的简洁性理念。因此代码的简单可维护性必然是 Redis 早期的核心准则之一,而引入多线程必然会导致代码的复杂度上升和可维护性下降。前面我们提到引入多线程必须的同步机制,如果 Redis 使用多线程模式,那么所有的底层数据结构都必须实现成线程安全的,这无疑又使得 Redis 的实现变得更加复杂。总而言之,Redis 选择单线程可以说是多方博弈之后的一种权衡:在保证足够的性能表现之下,使用单线程保持代码的简单和可维护性。

在 v6.0 版本之前,Redis 的核心网络模型一直是一个典型的单 Reactor 模型:利用 epoll/select/kqueue 等多路复用技术,在单线程的事件循环中不断去处理事件(客户端请求),最后回写响应数据到客户端:

在这里插入图片描述

  • aeEventLoop:这是 Redis 自己实现的一个高性能事件库,里面封装了适配各个系统的 I/O多路复用(I/O multiplexing),EventLoop除了 处理socket 的读写事件外,还要处理一些定时任务。aeEventLoop本质是一个线程,服务启动时就一直循环,调用 aeProcessEvent 处理文件(网络)或者时间事件;等价于Java中NIO的select线程
  • client :代表一个客户端连接。Redis 是典型的 CS 架构(Client <—> Server),客户端通过 socket 与服务端建立网络通道然后发送请求命令,服务端执行请求的命令并回复。Redis 使用结构体 client 存储客户端的所有相关信息,包括但不限于封装的套接字连接 – conn,当前选择的数据库指针 –db,读入缓冲区 – querybuf,写出缓冲区 – buf,写出数据链表 – reply等;
  • acceptTcpHandler:角色 Acceptor 的实现,当有新的客户端连接时会调用这个方法,它会调用系统 accept 创建一个 socket 对象,同时创建 client 对象,并将 socket 添加到 EventLoop 的监听列表中(等价于NIO中注册socket到select上),并注册当对应的读事件发生时的回调函数 readQueryFromClient:即绑定 Handler,这样当该客户端发起请求时,就会调用对应的回调函数处理请求;
  • readQueryFromClient:角色 Handler 的实现,主要负责解析并执行客户端的命令请求,并将结果写到对应的 client->buf 或者 client->reply 中;
  • beforeSleep:事件循环之前的操作,主要执行一些常规任务,比如将 client 中的数据写会给客户端、进行一些持久化任务(AOF 或者RDB操作,主从同步)等。

下面我们描绘一下 客户端client 与 Redis server 建立连接、发起请求到接收到返回的整个过程:

  • 首先Redis 服务器启动,开启主线程事件循环 aeMain,注册 acceptTcpHandler 连接应答处理器到用户配置的监听端口对应的文件描述符,等待新连接到来;
  • 客户端和服务端建立网络连接,acceptTcpHandler 被调用,主线程将 readQueryFromClient 命令读取处理器绑定到新连接对应的文件描述符上作为对应事件发生时的回调函数,并初始化一个 client 绑定这个客户端连接;
  • 客户端发送请求命令,触发读就绪事件,主线程调用 readQueryFromClient 通过 socket 读取客户端发送过来的命令存入 client->querybuf 读入缓冲区;
  • 接着调用 processInputBuffer,在其中使用 processInlineBuffer 或者 processMultibulkBuffer 根据 Redis 协议解析命令,最后调用 processCommand 执行命令;
  • 根据请求命令的类型(SET, GET, DEL, EXEC 等),分配相应的命令执行器去执行,最后调用 addReply 函数族的一系列函数将响应数据写入到对应 client 的写出缓冲区:client->buf 或者 client->reply ,client->buf 是首选的写出缓冲区,固定大小 16KB,一般来说可以缓冲足够多的响应数据,但是如果客户端在时间窗口内需要响应的数据非常大,那么则会自动切换到 client->reply链表上去,使用链表理论上能够保存无限大的数据(受限于机器的物理内存),最后把 client 添加进一个 LIFO 队列 clients_pending_write;
  • 在事件循环 aeMain 中,主线程执行 beforeSleep --> handleClientsWithPendingWrites,遍历 clients_pending_write 队列,调用 writeToClient 把 client 的写出缓冲区里的数据回写到客户端,如果写出缓冲区还有数据遗留,则注册 sendReplyToClient 命令回复处理器到该连接的写就绪事件,等待客户端可写时在事件循环中再继续回写残余的响应数据。

二、一次客户端与redis的完整通信过程图解

2.1 建立连接

  1. 首先,redis 服务端进程初始化的时候,会将 server socket 的 AE_READABLE 事件与连接应答处理器关联。
  2. 客户端 socket01 向 redis 进程的 server socket 请求建立连接,此时 server socket 会产生一个 AE_READABLE 事件,IO 多路复用程序监听到 server socket 产生的事件后,将该 socket 压入队列中。
  3. 文件事件分派器从队列中获取 socket,交给连接应答处理器。
  4. 连接应答处理器会创建一个能与客户端通信的 socket01,并将该 socket01 的 AE_READABLE 事件与命令请求处理器关联。

2.2 执行一个set请求

  1. 客户端发送了一个 set key value 请求,此时 redis 中的 socket01 会产生 AE_READABLE 事件,IO 多路复用程序将 socket01 压入队列,
  2. 此时事件分派器从队列中获取到 socket01 产生的 AE_READABLE 事件,由于前面 socket01 的 AE_READABLE 事件已经与命令请求处理器关联,
  3. 因此事件分派器将事件交给命令请求处理器来处理。命令请求处理器读取 socket01 的 key value 并在自己内存中完成 key value 的设置。
  4. 操作完成后,它会将 socket01 的 AE_WRITABLE 事件与命令回复处理器关联。
  5. 如果此时客户端准备好接收返回结果了,那么 redis 中的 socket01 会产生一个 AE_WRITABLE 事件,同样压入队列中,
  6. 事件分派器找到相关联的命令回复处理器,由命令回复处理器对 socket01 输入本次操作的一个结果,比如 ok,之后解除 socket01 的 AE_WRITABLE 事件与命令回复处理器的关联。
    在这里插入图片描述

三、redis为什么效率这么高?

  • 纯内存操作。
  • 核心是基于非阻塞的 IO 多路复用机制。
  • C 语言实现,语言更接近操作系统,执行速度相对会更快。
  • 单线程反而避免了多线程的频繁上下文切换问题,预防了多线程可能产生的竞争问题。

参考:中华石衫老师的亿级流量电商详情页缓存架构设计教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1146202.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue3.3指北(四)

Vue3.3指北 1、WebPack - VueCLI1.1、WebPack安装VueCli1.2、vue create 创建项目1.3、项目目录结构介绍 2、ViteVue32.1、认识create-vue2.2、使用create-vue创建项目2.3、项目目录剖析2.4、ESlint代码规范及手动修复2.5、通过eslint插件来实现自动修正 3、VueRouter43.1、单页…

SpringCloud 微服务全栈体系(七)

第九章 Docker 一、什么是 Docker 微服务虽然具备各种各样的优势&#xff0c;但服务的拆分通用给部署带来了很大的麻烦。 分布式系统中&#xff0c;依赖的组件非常多&#xff0c;不同组件之间部署时往往会产生一些冲突。在数百上千台服务中重复部署&#xff0c;环境不一定一致…

基于SpringBoot的个人博客系统

基于SpringBootVue的个人博客系统的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBootMyBatisVue工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 主页 系统公告 博客详情 后台发文 摘要 基于Spring Boot的个人博客系统是一种…

实用搜索小技巧——站在巨人的肩膀上看世界

文章目录 1. 关于搜索效率2. 谷歌搜索语法2.1 “” 限定关键词2.2 intitle 限定标题2.3 限定关键词限定标题2.4 allintitle 标题多个关键词2.5 intext 限定内容关键词2.6 inurl 限定网址关键词2.7 site 限定网址来源2.8 imagesize 限定图片尺寸2.9 filetype 限定文件格式 3. in…

8.自定义组件布局和详解Context上下文

pages/index.vue layout布局运行在服务端 1、在项目的目录下新建layout文件夹&#xff0c;并新建一个blog.vue布局文件 2、在页面中的layout函数里&#xff0c;返回刚才新建布局文件的名字blog就可以使用了 export default {...layout (context) {console.log(context)retu…

探索Vue 3和Vue 2的区别

目录 响应式系统 性能优化 Composition API TypeScript支持 总结 Vue.js是一款流行的JavaScript框架&#xff0c;用于构建用户界面。Vue 3是Vue.js的最新版本&#xff0c;相较于Vue 2引入了许多重大变化和改进。在本文中&#xff0c;我们将探索Vue 3和Vue 2之间的区别。 …

【中国知名企业高管团队】系列50:荣耀手机

今天为您介绍中国手机的一个“新势力”——荣耀。说是“新”是因为他单独运作的时间最短&#xff0c;说他“势力”是因为他的崛起自带光环&#xff0c;市场拓展和发展让OPPO、VIVO和小米都感到巨大的压力&#xff0c;可以说中国市场的大部分份额都被苹果、华为、OPPO、VIVO、小…

图解java.util.concurrent并发包源码系列——深入理解ConcurrentHashMap并发容器,看完薪水涨一千

图解java.util.concurrent并发包源码系列——深入理解ConcurrentHashMap并发容器 HashMap简单介绍HashMap在并发场景下的问题HashMap在并发场景下的替代方案ConcurrentHashMap如何在线程安全的前提下提升并发度1.71.8 JDK1.7的ConcurrentHashMap源码JDK1.8的ConcurrentHashMap源…

2016年上半年上午易错题(软件设计师考试)

以下媒体文件格式中&#xff0c;&#xff08; 12 &#xff09;是视频文件格式。 A &#xff0e; WAV B &#xff0e; BMP C &#xff0e; MP3 D&#xff0e;MOV 以下软件产品中&#xff0c;属于图像编辑处理工具的软件是&#xff08; 13 &#xff09;。 A &#xff0e; Po…

Flask 路由机制分析之一

一、前言 《Flask Run运行机制剖析》这篇我们讲了应用启动的内部机制&#xff0c;启动后就开始监听Http请求了&#xff0c;请求过来如何跳到对应的函数执行&#xff0c;这就是路由机制。我们沿用上一篇例子&#xff0c;来探究一下app.route("/")内部干了些什么事。 …

2017年上半年上午易错题(软件设计师考试)

CPU 执行算术运算或者逻辑运算时&#xff0c;常将源操作数和结果暂存在&#xff08; &#xff09;中。 A &#xff0e; 程序计数器 (PC) B. 累加器 (AC) C. 指令寄存器 (IR) D. 地址寄存器 (AR) 某系统由下图所示的冗余部件构成。若每个部件的千小时可靠度都为 R &…

HiQPdf Library for .NET - HTML to PDF Crack

HiQPdf Library for .NET - HTML 到 PDF 转换器 .NET Core&#xff0c;用于 .NET 的 HiQPdf HTML 到 PDF 转换器 &#xff1a;HiQPdf HTML to PDF Library for .NET C# 和 HTML to PDF .NET Core 为您提供了一个现代、快速、灵活且强大的工具&#xff0c;只需几行代码即可创建复…

Python 算法高级篇:堆排序的优化与应用

Python 算法高级篇&#xff1a;堆排序的优化与应用 引言 1. 什么是堆&#xff1f;2. 堆的性质3. 堆排序的基本原理4. 堆排序的 Python 实现5. 堆排序的性能和优化6. 堆排序的实际应用7. 总结 引言 堆排序是一种高效的排序算法&#xff0c;它基于数据结构中的堆这一概念。堆排序…

给VSCode插上一双AI的翅膀

文章目录 前言一、安装DevChat1.1、访问地址1.2、注册1.3、在VSCode里安装DevChat插件1.3.1、未安装状态1.3.2、已安装状态 二、设置Access Key2.1. 点击左下角管理&#xff08;“齿轮”图标&#xff09;—命令面板&#xff08;Command Palette&#xff09;&#xff0c;如下图2…

独家揭秘|小米14魔改存储芯片多出8GB空间背后的秘诀

在昨天发表的文章下面&#xff0c;有粉丝朋友要求“评价下小米256GB多8GB的技术”。小编也是好奇&#xff0c;本文就让我们一起来看看这个“高科技”背后的秘密。&#xff08;提前声明&#xff1a;本文内容仅代表个人观点&#xff0c;如果不当之处&#xff0c;小米公司不要投诉…

09.K8S高可用-堆叠etcd拓扑测试说明

堆叠 etcd 拓扑 1、部署架构如图 2、原理说明 核心组件高可用模式高可用实现方式apiserver主备keepalived + haproxycontroller-manager主备leader electionscheduler主备leader electionetcd集群kubeadm**「vip」**由外部负载均衡器提供一个vip,流量负载到keepalived master…

vue 内置指令-v-pre/v-memo

一、v-pre 使用了该指令的元素和子元素会被编译忽略&#xff0c;也就是不进行编译&#xff0c;其中包含的所有vue模版语法都会原样显示&#xff0c;作用加快vue的编译 例子&#xff1a; <p v-pre>{{不会被编译}}<span v-text"msg"></span></p&…

2016年下半年上午易错题(软件设计师考试)

在程序运行过程中&#xff0c; CPU 需要将指令从内存中取出并加以分析和执行。 CPU 依据&#xff08; &#xff09;来区 分在内存中以二进制编码形式存放的指令和数据。 A&#xff0e;指令周期的不同阶段 B &#xff0e;指令和数据的寻址方式 C &#xff0e;指令操作码的…

基于计算机视觉的坑洼道路检测和识别-MathorCup A(深度学习版本)

1 2023 年 MathorCup 高校数学建模挑战赛——大数据竞赛 赛道 A&#xff1a;基于计算机视觉的坑洼道路检测和识别 使用深度学习模型&#xff0c;pytorch版本进行图像训练和预测&#xff0c;使用ResNet50模型 2 文件夹预处理 因为给定的是所有图片都在一个文件夹里面&#xf…

Wpf 使用 Prism 实战开发Day03

一.实现左侧菜单绑定 效果图: 1.首先需要在项目中创建 mvvm 的架构模式 创建 Models &#xff0c;放置实体类。 实体类需要继承自Prism 框架的 BindableBase&#xff0c;目的是让实体类支持数据的动态变更! 例如: 系统导航菜单实体类 / <summary>/// 系统导航菜单实体类…