【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割6(数据预处理)

news2024/12/24 9:29:39

由于之前哔站作者整理的LUNA16数据处理方式过于的繁琐,于是,本文就对LUNA16数据做一个新的整理,最终得到的数据和形式是差不多的。但是,主要不同的是代码逻辑比较的简单,便于理解。

对于数据集的学习,可以去参考这里:【LIDC-IDRI】 CT 肺结节 XML 标记特征良恶性标签PKL转储(一)

步骤和中心内容,包括一下几个部分:

  1. masks生成:从xml文件中,抽取出对应序列series的结节标记位置坐标(可能一个结节多人多次标注),生成对应的mask数组文件,大小与图像数组大小一致;
  2. 肺实质提取操作:从肺区分割的数据中,与原始图像和mask图做乘积操作,非肺区部分进行填充,或者去除操作均可;
  3. resample操作:根据spacing,进行resample操作,可以在zyx三个维度进行resample,也可以仅仅在z方向进行resample操作位1mm(这个我在论文中看到有类似这样做的);
  4. 根据mask,获取结节的zyx中心点坐标,和半径。

至此,我们将收获以下几个文件:

  1. 包含ct的图像数据;
  2. 对应的mask数据;
  3. 记录zyx中心点坐标,和半径的文件。

相比于luna16给出的数据形式,目前的数据就比较好理解,和方便查看了。无论是可视化,还是后续的数据处理和训练,都更加的直观、明了。后面就会针对这部分,一一进行展开。

由于代码量还是比较大,处理的东西,和涉及的文件比较多,可能会几个篇章展开。本篇就先对xml文件进行处理,转出来,以便于查看。这里涉及到xml文件的格式,和处理,就单独开一篇,链接去参考:【医学影像数据处理】 XML 文件格式处理汇总

一、xml文件转储

1.1、认识标注文件xml

对于LIDC-IDRI数据集中,xml文件内各个字段表示什么意思的介绍,可以参考我的另一篇文章,点击这里:【LIDC-IDRI】 CT 肺结节 XML 标记特征良恶性标签PKL转储(一)

1

在这篇文章里面,着重介绍了这个数据的结构,以及xml各个记录的tag是什么意思。相信你看完,对这个数据集的处理,有更深的理解。

其中大部分代码都是跟上面这个链接介绍和获取的内容是一样的,可以参考这个GitHub:NoduleNet - utils -LIDC

有些内容没有介绍到,简单做个补充

  • ResponseHeader:这个是头部分,记录了这个病例(也就是单个病人的CT图像)的信息。

为了方便查看,和学习xml文件,可以参考这篇文章:【医学影像数据处理】 XML 文件格式处理汇总。我们就采用其中xml转字典的形式,方便我们查看。下面就展示了转字典后的前后部分内容对比,如下:

原始xml的数据形式,节选了其中的一小段,展示如下:

<?xml version="1.0" encoding="UTF-8"?>
<LidcReadMessage uid="1.3.6.1.4.1.14519.5.2.1.6279.6001.1308168927505.0" xmlns="http://www.nih.gov" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.nih.gov http://troll.rad.med.umich.edu/lidc/LidcReadMessage.xsd">
  <ResponseHeader>
    <Version>1.7</Version>
    <MessageId>1148851</MessageId>
    <DateRequest>2005-11-03</DateRequest>
    <TimeRequest>12:25:10</TimeRequest>
    <RequestingSite>removed</RequestingSite>
    <ServicingSite>removed</ServicingSite>
    <TaskDescription>Second unblinded read</TaskDescription>
    <CtImageFile>removed</CtImageFile>
    <SeriesInstanceUid>1.3.6.1.4.1.14519.5.2.1.6279.6001.131939324905446238286154504249</SeriesInstanceUid>
    <StudyInstanceUID>1.3.6.1.4.1.14519.5.2.1.6279.6001.303241414168367763244410429787</StudyInstanceUID>
    <DateService>2005-11-03</DateService>
    <TimeService>12:25:40</TimeService>
    <ResponseDescription>1 - Reading complete</ResponseDescription>
    <ResponseComments></ResponseComments>
  </ResponseHeader>

转换成dictionary字典后的形式。(更便于查看了)

{
  "LidcReadMessage": {
    "@uid": "1.3.6.1.4.1.14519.5.2.1.6279.6001.1308168927505.0",
    "@xmlns": "http://www.nih.gov",
    "@xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance",
    "@xsi:schemaLocation": "http://www.nih.gov http://troll.rad.med.umich.edu/lidc/LidcReadMessage.xsd",
    "ResponseHeader": {
      "Version": "1.7",
      "MessageId": "1148851",
      "DateRequest": "2005-11-03",
      "TimeRequest": "12:25:10",
      "RequestingSite": "removed",
      "ServicingSite": "removed",
      "TaskDescription": "Second unblinded read",
      "CtImageFile": "removed",
      "SeriesInstanceUid": "1.3.6.1.4.1.14519.5.2.1.6279.6001.131939324905446238286154504249",
      "StudyInstanceUID": "1.3.6.1.4.1.14519.5.2.1.6279.6001.303241414168367763244410429787",
      "DateService": "2005-11-03",
      "TimeService": "12:25:40",
      "ResponseDescription": "1 - Reading complete",
      "ResponseComments": null
    },
}

1.2、xml综合记录转为按series的npy文件

LIDC-IDRI1018个检查,在标记文件夹tcia-lidc-xml6 个文件夹中,有1318 xml文件。并且,这些xml文件的名称,和图像的序列名称不是一一对应的。

所以,就需要现将xml文件内标注的信息,给重新整理出来,转为人能轻易看懂和理解的内容。并且,标注文件如果能与图像文件是一一对应的,那么后续的处理也会方便了许多。

这一小节做的事情,就是将xml文件,给抽取出来,留下关心的内容,其他不重要的,不关心的内容暂时不管。

下面是处理的代码,主要的步骤如下概述:

  1. 遍历所有的xml文件,一一处理;
  2. 对单个xml文件,解析出seriesuid和标注的结节坐标;
  3. 存储到以seriesuid命名的npy文件,存储的内容就是一个个结节坐标。

完整代码如下:

from tqdm import tqdm
import sys
import os
import numpy as np

from pylung.utils import find_all_files
from pylung.annotation import parse

def xml2mask(xml_file):
    header, annos = parse(xml_file)  # get one xml info

    ctr_arrs = []
    for i, reader in enumerate(annos):
        for j, nodule in enumerate(reader.nodules):
            ctr_arr = []
            for k, roi in enumerate(nodule.rois):
                z = roi.z
                for roi_xy in roi.roi_xy:
                    ctr_arr.append([z, roi_xy[1], roi_xy[0]])  # [[[z, y, x], [z, y, x]]]
            ctr_arrs.append(ctr_arr)

    seriesuid = header.series_instance_uid
    return seriesuid, ctr_arrs

def annotation2masks(annos_dir, save_dir):
    # get all xml file path
    files = find_all_files(annos_dir, '.xml')
    for f in tqdm(files, total=len(files)):
        print(f)
        try:
            seriesuid, masks = xml2mask(f)
            np.save(os.path.join(save_dir, '%s' % (seriesuid)), masks)  # save xml 3D coor [[z, y, x], [z, y, x]]
        except:
            print("Unexpected error:", sys.exc_info()[0])


if __name__ == '__main__':
    annos_dir = './LUNA16/annotation/LIDC-XML-only/tcia-lidc-xml'     # .xml
    ctr_arr_save_dir = './LUNA16/annotation/noduleCoor'  # 保存每个注释器解析的中间结节mask的地方

    os.makedirs(ctr_arr_save_dir, exist_ok=True)

    # xml信息,转储npy(临时文件)
    annotation2masks(annos_dir, ctr_arr_save_dir)

下面打开一个·npy·文件进行查看,记录的内容如下,是所有医生对这个序列标注的所有结节的polygon坐标点:

[list([[-299.8, 206, 42], [-299.8, 207, 41], [-299.8, 208, 41], [-299.8, 209, 40], [-299.8, 210, 40], [-299.8, 211, 41], [-299.8, 212, 41], [-299.8, 213, 42], [-299.8, 214, 42], [-299.8, 215, 43], [-299.8, 216, 44], [-299.8, 216, 45], [-299.8, 215, 46], [-299.8, 215, 47], [-299.8, 215, 48], [-299.8, 214, 49], [-299.8, 213, 49], [-299.8, 212, 49], [-299.8, 211, 49], [-299.8, 210, 49], [-299.8, 209, 49], [-299.8, 208, 48], [-299.8, 207, 47], [-299.8, 207, 46], [-299.8, 206, 45], [-299.8, 206, 44], [-299.8, 206, 43], [-299.8, 206, 42], [-298.0, 206, 46], [-298.0, 207, 45], [-298.0, 207, 44], [-298.0, 208, 43], [-298.0, 209, 42], [-298.0, 209, 41], [-298.0, 210, 40], [-298.0, 211, 40], [-298.0, 212, 39], [-298.0, 213, 40], [-298.0, 214, 41], [-298.0, 215, 42], [-298.0, 215, 43], [-298.0, 216, 44], [-298.0, 216, 45], [-298.0, 216, 46], [-298.0, 216, 47], [-298.0, 215, 48], [-298.0, 214, 48], [-298.0, 213, 48], [-298.0, 212, 48], [-298.0, 211, 48], [-298.0, 210, 48], [-298.0, 209, 48], [-298.0, 208, 48], [-298.0, 207, 47], [-298.0, 206, 46], [-296.2, 209, 42], [-296.2, 210, 41], [-296.2, 211, 40], [-296.2, 212, 40], [-296.2, 213, 41], [-296.2, 214, 42], [-296.2, 215, 43], [-296.2, 216, 44], [-296.2, 216, 45], [-296.2, 216, 46], [-296.2, 216, 47], [-296.2, 216, 48], [-296.2, 215, 49], [-296.2, 214, 49], [-296.2, 213, 49], [-296.2, 212, 49], [-296.2, 211, 48], [-296.2, 210, 47], [-296.2, 209, 46], [-296.2, 209, 45], [-296.2, 209, 44], [-296.2, 209, 43], [-296.2, 209, 42]])
 list([[-227.8, 151, 405], [-227.8, 152, 404], [-227.8, 153, 403], [-227.8, 154, 402], [-227.8, 155, 402], [-227.8, 156, 402], [-227.8, 157, 403], [-227.8, 157, 404], [-227.8, 157, 405], [-227.8, 158, 406], [-227.8, 158, 407], [-227.8, 158, 408], [-227.8, 157, 409], [-227.8, 156, 409], [-227.8, 155, 409], [-227.8, 154, 408], [-227.8, 153, 408], [-227.8, 152, 407], [-227.8, 151, 406], [-227.8, 151, 405], [-226.0, 152, 405], [-226.0, 153, 404], [-226.0, 154, 404], [-226.0, 155, 403], [-226.0, 156, 404], [-226.0, 157, 405], [-226.0, 157, 406], [-226.0, 157, 407], [-226.0, 156, 408], [-226.0, 155, 408], [-226.0, 154, 408], [-226.0, 153, 408], [-226.0, 152, 407], [-226.0, 152, 406], [-226.0, 152, 405]])
 list([[-226.0, 158, 407], [-226.0, 157, 408], [-226.0, 156, 409], [-226.0, 155, 409], [-226.0, 154, 409], [-226.0, 153, 409], [-226.0, 152, 408], [-226.0, 151, 407], [-226.0, 152, 406], [-226.0, 153, 405], [-226.0, 153, 404], [-226.0, 154, 403], [-226.0, 155, 402], [-226.0, 156, 402], [-226.0, 157, 403], [-226.0, 158, 404], [-226.0, 158, 405], [-226.0, 158, 406], [-226.0, 158, 407], [-227.8, 159, 407], [-227.8, 158, 408], [-227.8, 157, 409], [-227.8, 156, 410], [-227.8, 155, 410], [-227.8, 154, 410], [-227.8, 153, 409], [-227.8, 152, 408], [-227.8, 151, 407], [-227.8, 151, 406], [-227.8, 151, 405], [-227.8, 152, 404], [-227.8, 153, 403], [-227.8, 154, 402], [-227.8, 155, 402], [-227.8, 156, 402], [-227.8, 157, 403], [-227.8, 158, 404], [-227.8, 158, 405], [-227.8, 158, 406], [-227.8, 159, 407]])
 list([[-296.2, 214, 46], [-296.2, 213, 47], [-296.2, 212, 47], [-296.2, 211, 47], [-296.2, 210, 46], [-296.2, 209, 45], [-296.2, 208, 44], [-296.2, 208, 43], [-296.2, 208, 42], [-296.2, 209, 41], [-296.2, 210, 42], [-296.2, 211, 42], [-296.2, 212, 43], [-296.2, 213, 44], [-296.2, 214, 45], [-296.2, 214, 46], [-298.0, 216, 47], [-298.0, 215, 48], [-298.0, 214, 49], [-298.0, 213, 49], [-298.0, 212, 49], [-298.0, 211, 49], [-298.0, 210, 49], [-298.0, 209, 48], [-298.0, 208, 47], [-298.0, 207, 46], [-298.0, 207, 45], [-298.0, 207, 44], [-298.0, 208, 43], [-298.0, 208, 42], [-298.0, 209, 41], [-298.0, 210, 41], [-298.0, 211, 41], [-298.0, 212, 41], [-298.0, 213, 41], [-298.0, 214, 42], [-298.0, 215, 43], [-298.0, 216, 44], [-298.0, 216, 45], [-298.0, 216, 46], [-298.0, 216, 47], [-299.8, 216, 50], [-299.8, 215, 51], [-299.8, 214, 51], [-299.8, 213, 50], [-299.8, 212, 50], [-299.8, 211, 50], [-299.8, 210, 49], [-299.8, 209, 48], [-299.8, 208, 47], [-299.8, 207, 46], [-299.8, 207, 45], [-299.8, 207, 44], [-299.8, 208, 43], [-299.8, 209, 42], [-299.8, 210, 42], [-299.8, 211, 41], [-299.8, 212, 41], [-299.8, 213, 42], [-299.8, 214, 42], [-299.8, 215, 43], [-299.8, 216, 44], [-299.8, 216, 45], [-299.8, 216, 46], [-299.8, 216, 47], [-299.8, 216, 48], [-299.8, 216, 49], [-299.8, 216, 50]])
 list([[-226.0, 158, 407], [-226.0, 157, 408], [-226.0, 156, 409], [-226.0, 155, 409], [-226.0, 154, 409], [-226.0, 153, 409], [-226.0, 152, 409], [-226.0, 151, 409], [-226.0, 151, 408], [-226.0, 151, 407], [-226.0, 151, 406], [-226.0, 151, 405], [-226.0, 152, 404], [-226.0, 152, 403], [-226.0, 153, 403], [-226.0, 154, 402], [-226.0, 154, 401], [-226.0, 155, 401], [-226.0, 156, 401], [-226.0, 157, 401], [-226.0, 157, 402], [-226.0, 158, 403], [-226.0, 158, 404], [-226.0, 158, 405], [-226.0, 158, 406], [-226.0, 158, 407], [-227.8, 159, 407], [-227.8, 158, 408], [-227.8, 158, 409], [-227.8, 157, 409], [-227.8, 156, 410], [-227.8, 155, 410], [-227.8, 154, 409], [-227.8, 153, 409], [-227.8, 152, 409], [-227.8, 151, 408], [-227.8, 151, 407], [-227.8, 151, 406], [-227.8, 151, 405], [-227.8, 151, 404], [-227.8, 152, 403], [-227.8, 152, 402], [-227.8, 153, 401], [-227.8, 154, 401], [-227.8, 155, 401], [-227.8, 156, 401], [-227.8, 157, 401], [-227.8, 158, 402], [-227.8, 158, 403], [-227.8, 159, 404], [-227.8, 159, 405], [-227.8, 159, 406], [-227.8, 159, 407]])
 list([[-296.2, 215, 47], [-296.2, 214, 48], [-296.2, 213, 48], [-296.2, 212, 48], [-296.2, 211, 48], [-296.2, 210, 47], [-296.2, 209, 47], [-296.2, 208, 46], [-296.2, 208, 45], [-296.2, 207, 44], [-296.2, 207, 43], [-296.2, 208, 42], [-296.2, 209, 42], [-296.2, 210, 42], [-296.2, 211, 42], [-296.2, 212, 43], [-296.2, 213, 43], [-296.2, 214, 44], [-296.2, 215, 45], [-296.2, 215, 46], [-296.2, 215, 47], [-298.0, 216, 47], [-298.0, 215, 48], [-298.0, 214, 49], [-298.0, 214, 50], [-298.0, 213, 50], [-298.0, 212, 50], [-298.0, 211, 49], [-298.0, 210, 49], [-298.0, 209, 48], [-298.0, 208, 48], [-298.0, 207, 47], [-298.0, 207, 46], [-298.0, 207, 45], [-298.0, 207, 44], [-298.0, 207, 43], [-298.0, 207, 42], [-298.0, 207, 41], [-298.0, 208, 41], [-298.0, 209, 41], [-298.0, 210, 41], [-298.0, 211, 41], [-298.0, 212, 41], [-298.0, 213, 41], [-298.0, 214, 41], [-298.0, 215, 42], [-298.0, 215, 43], [-298.0, 216, 44], [-298.0, 216, 45], [-298.0, 216, 46], [-298.0, 216, 47], [-299.8, 217, 46], [-299.8, 216, 47], [-299.8, 216, 48], [-299.8, 215, 49], [-299.8, 214, 50], [-299.8, 213, 50], [-299.8, 212, 50], [-299.8, 211, 50], [-299.8, 210, 50], [-299.8, 209, 49], [-299.8, 208, 48], [-299.8, 208, 47], [-299.8, 207, 46], [-299.8, 207, 45], [-299.8, 207, 44], [-299.8, 208, 43], [-299.8, 209, 42], [-299.8, 209, 41], [-299.8, 210, 41], [-299.8, 211, 41], [-299.8, 212, 41], [-299.8, 213, 41], [-299.8, 214, 42], [-299.8, 215, 42], [-299.8, 215, 43], [-299.8, 216, 44], [-299.8, 217, 45], [-299.8, 217, 46], [-301.6, 214, 45], [-301.6, 213, 46], [-301.6, 212, 47], [-301.6, 211, 47], [-301.6, 210, 46], [-301.6, 209, 45], [-301.6, 210, 44], [-301.6, 211, 43], [-301.6, 212, 43], [-301.6, 213, 44], [-301.6, 214, 45]])
 list([[-296.2, 209, 43], [-296.2, 209, 44], [-296.2, 210, 45], [-296.2, 211, 46], [-296.2, 212, 47], [-296.2, 212, 48], [-296.2, 213, 48], [-296.2, 214, 48], [-296.2, 215, 47], [-296.2, 215, 46], [-296.2, 215, 45], [-296.2, 214, 44], [-296.2, 213, 43], [-296.2, 212, 43], [-296.2, 211, 43], [-296.2, 210, 43], [-296.2, 209, 43], [-298.0, 208, 42], [-298.0, 208, 43], [-298.0, 208, 44], [-298.0, 208, 45], [-298.0, 208, 46], [-298.0, 208, 47], [-298.0, 209, 47], [-298.0, 210, 48], [-298.0, 211, 48], [-298.0, 211, 49], [-298.0, 212, 49], [-298.0, 213, 48], [-298.0, 214, 48], [-298.0, 215, 47], [-298.0, 216, 46], [-298.0, 216, 45], [-298.0, 216, 44], [-298.0, 215, 43], [-298.0, 214, 43], [-298.0, 213, 42], [-298.0, 212, 42], [-298.0, 212, 41], [-298.0, 211, 41], [-298.0, 210, 41], [-298.0, 209, 42], [-298.0, 208, 42], [-299.8, 210, 43], [-299.8, 209, 43], [-299.8, 208, 44], [-299.8, 207, 44], [-299.8, 207, 45], [-299.8, 207, 46], [-299.8, 208, 47], [-299.8, 209, 48], [-299.8, 210, 49], [-299.8, 211, 49], [-299.8, 212, 49], [-299.8, 213, 50], [-299.8, 214, 49], [-299.8, 215, 48], [-299.8, 215, 47], [-299.8, 216, 46], [-299.8, 216, 45], [-299.8, 215, 44], [-299.8, 215, 43], [-299.8, 214, 43], [-299.8, 214, 42], [-299.8, 213, 42], [-299.8, 212, 41], [-299.8, 211, 41], [-299.8, 210, 42], [-299.8, 210, 43]])] <class 'numpy.ndarray'>

二、标记次数和mask数组生成

生成npy文件并不是此次标注信息的最终结果,有以下几个原因:

  1. xml文件内标注的结节坐标是多个医生分别标注的,所以会存在标注上的重叠(也就是一个结节被多个医生重复标注,很多是背靠背标注,也不知道其他医生标注了什么)。所以需要对多人标注的内容进行处理,留下最终的结节坐标;
  2. 只是坐标点,还需要生成和image一样shape,相互对应的mask文件。

根据上面几个原因,生成最终mask文件,就需要经历以下几个步骤:

  1. 标记的结节坐标点,需要将hu zinstanceNum处理,对应的图像上;
  2. 对多个医生标注的结节,进行处理,根据iou重叠规则,留下最终的结节;
  3. 留下的结节坐标,绘制到mask上,存储下来。

实现代码如下:

import nrrd
import SimpleITK as sitk
import cv2
import os
import numpy as np

def load_itk_image(filename):
    """
    Return img array and [z,y,x]-ordered origin and spacing
    """
    # sitk.ReadImage返回的image的shape是x、y、z
    itkimage = sitk.ReadImage(filename)
    numpyImage = sitk.GetArrayFromImage(itkimage)

    numpyOrigin = np.array(list(reversed(itkimage.GetOrigin())))
    numpySpacing = np.array(list(reversed(itkimage.GetSpacing())))

    return numpyImage, numpyOrigin, numpySpacing


def arrs2mask(img_dir, ctr_arr_dir, save_dir):
    cnt = 0
    consensus = {1: 0, 2: 0, 3: 0, 4: 0}  # 一致意见

    # generate save document
    for k in consensus.keys():
        if not os.path.exists(os.path.join(save_dir, str(k))):
            os.makedirs(os.path.join(save_dir, str(k)))

    for f in os.listdir(img_dir):
        if f.endswith('.mhd'):
            pid = f[:-4]
            print('pid:', pid)
            # ct
            img, origin, spacing = load_itk_image(os.path.join(img_dir, '%s.mhd' % (pid)))

            # mask coor npy
            ctr_arrs = np.load(os.path.join(ctr_arr_dir, '%s.npy' % (pid)), allow_pickle=True)
            cnt += len(ctr_arrs)

            nodule_masks = []
            # 依次标注结节处理
            for ctr_arr in ctr_arrs:
                z_origin = origin[0]
                z_spacing = spacing[0]

                ctr_arr = np.array(ctr_arr)
                # ctr_arr[:, 0] z轴方向值,由hu z到instanceNum  [-50, -40, -30]-->[2, 3, 4]
                ctr_arr[:, 0] = np.absolute(ctr_arr[:, 0] - z_origin) / z_spacing  # 对数组中的每一个元素求其绝对值。np.abs是这个函数的简写
                ctr_arr = ctr_arr.astype(np.int32)
                print(ctr_arr)

                # 每一个标注的结节,都会新临时生成一个与img一样大小的mask文件
                mask = np.zeros(img.shape)
                # 遍历标注层的 z 轴序列
                for z in np.unique(ctr_arr[:, 0]):  # 去除其中重复的元素 ,并按元素 由小到大排序
                    ctr = ctr_arr[ctr_arr[:, 0] == z][:, [2, 1]]
                    ctr = np.array([ctr], dtype=np.int32)
                    mask[z] = cv2.fillPoly(mask[z], ctr, color=(1,))
                nodule_masks.append(mask)

            i = 0
            visited = []
            d = {}
            masks = []
            while i < len(nodule_masks):
                # If mached before, then no need to create new mask
                if i in visited:
                    i += 1
                    continue
                same_nodules = []
                mask1 = nodule_masks[i]
                same_nodules.append(mask1)
                d[i] = {}
                d[i]['count'] = 1
                d[i]['iou'] = []

                # Find annotations pointing to the same nodule
                # 当前结节mask[i],与其后面的所有结节,依次求iou
                for j in range(i + 1, len(nodule_masks)):
                    # if not overlapped with previous added nodules
                    if j in visited:
                        continue
                    mask2 = nodule_masks[j]
                    iou = float(np.logical_and(mask1, mask2).sum()) / np.logical_or(mask1, mask2).sum()

                    # 如果iou超过阈值,则当前第i个mask记为被重复标记一次
                    if iou > 0.4:
                        visited.append(j)
                        same_nodules.append(mask2)
                        d[i]['count'] += 1
                        d[i]['iou'].append(iou)

                masks.append(same_nodules)
                i += 1

            print(visited)
            exit()
            # only 4 people, check up 4 data
            for k, v in d.items():
                if v['count'] > 4:
                    print('WARNING:  %s: %dth nodule, iou: %s' % (pid, k, str(v['iou'])))
                    v['count'] = 4
                consensus[v['count']] += 1

            # number of consensus
            num = np.array([len(m) for m in masks])
            num[num > 4] = 4  # 最多4次,超过4次重复标记的,记为4次

            if len(num) == 0:
                continue
            # Iterate from the nodules with most consensus
            for n in range(num.max(), 0, -1):
                mask = np.zeros(img.shape, dtype=np.uint8)

                for i, index in enumerate(np.where(num >= n)[0]):
                    same_nodules = masks[index]
                    m = np.logical_or.reduce(same_nodules)
                    mask[m] = i + 1  # 区分不同的结节,不同的结节给与不同的数值,依次增加(如果是分割,可以直接都给1,或者最后统一处理为1也可以)
                nrrd.write(os.path.join(save_dir, str(n), pid+'.nrrd'), mask)  # mask

    print(consensus)
    print(cnt)

if __name__ == '__main__':
    img_dir = r'./LUNA16/image_combined'        # data

    ctr_arr_save_dir = r'./LUNA16/annotation/noduleCoor'  # 保存每个注释器解析的中间结节mask的地方
    noduleMask_save_dir = r'./LUNA16/nodule_masks'  # 保存合并结节掩码的文件夹

    # 对转储的临时文件,生成mask
    arrs2mask(img_dir, ctr_arr_save_dir, noduleMask_save_dir)

至此,和image一样shapemask是生成了。下面用itk-snap打开查看处理后的结果,如下所示:

在这里插入图片描述
属于分别打开imagemasknrrd图像,mhd格式的image,转nrrd,可以参考下面的代码:

nii_path = os.path.join(r'./LUNA16/image_combined', '1.3.6.1.4.1.14519.5.2.1.6279.6001.184412674007117333405073397832.mhd')
image = itk.array_from_image(itk.imread(nii_path))

nrrd.write(r'./image.nrrd', image)

三、总结

lidc-idri的数据集内的数据格式,都是我们不常遇到的数据形式,尤其是mhd文件的raw文件,同时表示一个数据的两个不同部分,也是很少遇到的。

但是对于初学者来说,理解这种数据形式,还是有些陌生,这部分相信通过本系列可以有较深的理解。与此同时,本篇还存储为nrrd文件,这是我比较喜欢的数组存储格式,理解的好理解和简单。

到这里,你就收获了一个新的一一对应关系。这样比你看xml文件,理解起来会简单很多。下一节,我们就对初步得到的imagemask,与肺区分割结合,进一步进行精细化处理。resample操作,调整数据到统一的尺度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1145136.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

pg 数据库,在新增的数据的时候,根据字段唯一性去更新数据

目录 1 问题2 实现 1 问题 在使用pg 数据库的时候&#xff0c;我们新增数据&#xff0c;希望如果有几个字段和数据库的一样&#xff0c;那么就更新数据&#xff0c;也就是在新增的时候&#xff0c;自动判断是否数据库有这个数据&#xff0c;有就更新&#xff0c;没有就新增 2…

StripedFly恶意软件框架感染了100万台Windows和Linux主机

导语 近日&#xff0c;一款名为StripedFly的恶意软件框架在网络安全研究人员的监视之外悄然感染了超过100万台Windows和Linux系统。这款跨平台的恶意软件平台在过去的五年中一直未被察觉。在去年&#xff0c;卡巴斯基实验室发现了这个恶意框架的真实本质&#xff0c;并发现其活…

网络流学习笔记

网络流基础 基本概念 源点&#xff08;source&#xff09; s s s&#xff0c;汇点 t t t。 容量&#xff1a;约等于边权。不存在的边流量可视为 0 0 0。 ( u , v ) (u,v) (u,v) 的流量通常记为 c ( u , v ) c(u,v) c(u,v)&#xff08;capacity&#xff09;。 流&#xff…

SDK 控件

目录 控件 控件创建 控件的消息处理 总代码 本篇文章对控件的学习&#xff0c;只是对基础的部分&#xff0c;简单的使用&#xff0c;包括消息的处理上&#xff0c;并不涉及深入的内容。 控件 区分控件&#xff0c;资源&#xff1a; SDK通常提供了一系列常用的用户界面控件…

san.js源码解读之模版解析(parseTemplate)篇——readIdent函数

一、源码分析 /*** 读取ident* 这里的 ident 指标识符(identifier)&#xff0c;也就是通常意义上的变量名* 这里默认的变量名规则为&#xff1a;由美元符号($)、数字、字母或者下划线(_)构成的字符串** inner* param {Walker} walker 源码读取对象* return {string}*/ functio…

虎去兔来(C++)

系列文章目录 进阶的卡莎C++_睡觉觉觉得的博客-CSDN博客数1的个数_睡觉觉觉得的博客-CSDN博客双精度浮点数的输入输出_睡觉觉觉得的博客-CSDN博客足球联赛积分_睡觉觉觉得的博客-CSDN博客大减价(一级)_睡觉觉觉得的博客-CSDN博客小写字母的判断_睡觉觉觉得的博客-CSDN博客纸币(…

python爬虫request和BeautifulSoup使用

request使用 1.安装request pip install request2.引入库 import requests3.编写代码 发送请求 我们通过以下代码可以打开豆瓣top250的网站 response requests.get(f"https://movie.douban.com/top250"&#xff09;但因为该网站加入了反爬机制&#xff0c;所以…

Python---练习:有一物,不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?

案例&#xff1a; 有一物&#xff0c;不知其数&#xff0c;三三数之余二&#xff0c;五五数之余三&#xff0c;七七数之余二&#xff0c;问物几何&#xff1f; 人话&#xff1a; 有一个数字&#xff0c;不知道具体是多少&#xff0c;用3去除剩2&#xff0c;用5去除剩3&#…

Vue 3.3.6 ,得益于WeakMap,比之前更快了

追忆往昔&#xff0c;穿越前朝&#xff0c;CSS也是当年前端三剑客之一&#xff0c;风光的很&#xff0c;随着前端跳跃式的变革&#xff0c;CSS在现代前端开发中似乎有点默默无闻起来。 不得不说当看到UnoCss之前&#xff0c;我甚至都还没听过原子化CSS[1]这个概念&#xff08;…

业界中说的快速原型法是什么

快速原型法是一种软件开发过程&#xff0c;其核心思想是在开发初期快速构建一个系统的原型&#xff0c;即一个工作模型&#xff0c;以便用户和开发者能够更好地理解系统的需求和功能。这种方法强调快速迭代和用户参与&#xff0c;目的是更早地发现和修正问题&#xff0c;从而提…

微软:Octo Tempest是最危险的金融黑客组织之一

导语 最近&#xff0c;微软发布了一份关于金融黑客组织Octo Tempest的详细报告。这个组织以其高级社交工程能力而闻名&#xff0c;专门针对从事数据勒索和勒索软件攻击的企业。Octo Tempest的攻击手段不断演变&#xff0c;目标范围也不断扩大&#xff0c;成为了电缆电信、电子邮…

回流重绘零负担,网页加载快如闪电

&#x1f3ac; 江城开朗的豌豆&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 &#x1f4dd; 个人网站 :《 江城开朗的豌豆&#x1fadb; 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 ⭐ 专栏简介 &#x1f4d8; 文章引言 一、回…

椭圆曲线点加的应用计算

一、点加应用 1.1 背景 假设一条椭圆曲线方程为 y^2 =x^3+ax+b确定这条椭圆曲线方程参数是p,a,b,G,n,h,除了参数a,b ,其他参数的意义 p为质数,(mod p)运算G为基点n为点G的阶h是椭圆曲线上所有点的个数m与n相除的商的整数部分1.2 方程(y^2 =x^3+x+6,P=11) 椭圆曲线方程y…

原始流,缓冲流性能比较

一.低级字节流一个一个字节复制 1.代码 package org.example;import java.io.*;public class day13 {//原视频路径private static final String file1 "D:\\temp\\day05\\改名.mp4";//目的视频路径private static final String file2 "D:\\temp\\day05\\不改…

消息队列中间件面试笔记总结RabbitMQ,Kafka,RocketMQ

文章目录 (一) Rabbit MQRabbitMQ 核心概念消息队列的作用Exchange(交换器)Broker&#xff08;消息中间件的服务节点&#xff09;如何保证消息的可靠性如何保证 RabbitMQ 消息的顺序性如何保证 RabbitMQ 高可用的&#xff1f;如何解决消息队列的延时以及过期失效问题消息堆积问…

服务运营 |论文解读: 住院病人“溢出”:一种近似动态规划方法

摘要 在住院床位管理中&#xff0c;医院通常会将住院病人分配到相对应的专科病房&#xff0c;但随着病人的入院和出院&#xff0c;可能会出现病人所需的专科病房满员&#xff0c;而其他病房却有空余床位的情况。于是就有了 "溢出 "策略&#xff0c;即当病人等候时间…

温湿度计传感器DHT11控制数码管显示verilog代码及视频

名称&#xff1a;温湿度计传感器DHT11控制数码管显示 软件&#xff1a;QuartusII 语言&#xff1a;Verilog 代码功能&#xff1a; 使用温湿度传感器DHT11采集环境的温度和湿度&#xff0c;并在数码管显示 本代码已在开发板验证 开发板资料&#xff1a; 大西瓜第一代FPGA升级…

leetCode 229. 多数元素 II + 摩尔投票法 + 进阶 + 优化空间

229. 多数元素 II - 力扣&#xff08;LeetCode&#xff09; 给定一个大小为 n 的整数数组&#xff0c;找出其中所有出现超过 ⌊ n/3 ⌋ 次的元素。 进阶&#xff1a;尝试设计时间复杂度为 O(n)、空间复杂度为 O(1)的算法解决此问题。 &#xff08;1&#xff09;哈希表 class …

Android-宝宝相册(第四次作业)

第四次作业-宝宝相册 题目 用Listview建立宝宝相册&#xff0c;相册内容及图片可自行设定&#xff0c;也可在资料文件中获取。给出模拟器仿真界面及代码截图。 &#xff08;参考例4-8&#xff09; 创建工程项目 创建名为baby的项目工程&#xff0c;最后的工程目录结构如下图所…

Linux 基本语句_8_C语言_文件控制

为了解决多个进程同时操作一个文件&#xff0c;产生一些情况&#xff0c;通常对文件进行上锁&#xff0c;已解决对共享文件的竞争 对打开文件进行各种操作&#xff1a; int fcentl(int fd, int cmd, .../*arg*/如果cmd与锁操作有关&#xff0c;那么fcentl函数的第三个参数就要…