【机器学习可解释性】4.SHAP 值

news2024/11/24 16:43:56

机器学习可解释性

  • 1.模型洞察的价值
  • 2.特征重要性排列
  • 3.部分依赖图
  • 4.SHAP 值
  • 5.SHAP 值 高级使用

正文

理解各自特征的预测结果?

介绍

您已经看到(并使用)了从机器学习模型中提取一般解释技术。但是,如果你想要打破模型对单个预测的工作原理?

SHAP 值 (SHapley Additive exPlanations的首字母缩写)对预测进行分解,以显示每个特征的影响。你可以在哪里使用这个?

  • 一个模型说,银行不应该借钱给某人,法律要求银行解释每笔拒绝贷款的依据
  • 医疗保健提供者想要确定是什么因素导致每个病人患某种疾病的风险,这样他们就可以通过有针对性的健康干预措施直接解决这些风险因素

在本次课程中,您将使用SHAP 值 来解释单个预测。在下一次课中,您将看到如何将这些聚合为强大的模型级洞察力。

SHAP 值 最初来自博弈论中的一个核心问题:在由具有不同技能组合的多个玩家组成的联盟中,这会导致一些集体回报,什么是最公平的如何在玩家之间分配收益?

它们是如何工作的

SHAP 值解释了对给定特性具有特定值的影响,并将其与我们在该特性采用某个基线值时所做的预测进行了比较。

举一个有用的例子,我们将继续从排列重要性和部分依赖图中关于足球数据预测全场最佳球员的例子。
在这些教程中,我们预测了一支球队是否会有球员赢得全场最佳球员奖。

我们可以问:

  • 球队进了3个球这个事实对预测的影响有多大?
    但如果我们将其重述为:
  • 有多少预测是由球队进了3个球这一事实驱动的,而不是一些基线的进球数。
    当然,每个团队都有很多特点。因此,如果我们回答了目标数量的问题,我们就可以对所有其他功能重复这个过程。

SHAP 值 以一种保证良好属性的方式做到这一点。具体来说,你可以用下面的公式来分解预测:

sum(所有特征的SHAP值) = pred_for_team - pred_for_baseline_values

也就是说,所有特征的SHAP值加起来解释了为什么我的预测与基线不同。这允许我们将预测分解成如下图:

shap

你如何理解这一点?

我们预测的值是0.7,而base_value是0.4979。导致预测增加的特征值是粉红色的,它们的看上去的大小显示了特征影响的大小。减少预测的特征值用蓝色表示。最大的影响来自于进球2。而控球值对预测结果有显著的降低作用。

如果用粉色条的长度减去蓝色条的长度,它等于从基本值到输出的距离。

这项技术有一些复杂性,要确保基线加上个体影响的总和加起来就是预测(这并不像听起来那么简单)。我们不会在这里详细讨论,因为它对使用该技术并不重要。这篇博文有一个更详细的理论解释。

计算SHAP值的代码

我们使用很棒的SHAP库来计算SHAP 值。

对于本例,我们将重用您已经看到的带有Soccer数据的模型。

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

data = pd.read_csv('../input/fifa-2018-match-statistics/FIFA 2018 Statistics.csv')
y = (data['Man of the Match'] == "Yes")  # 将 "Yes"/"No" 转化为 2进制 0 或 1
feature_names = [i for i in data.columns if data[i].dtype in [np.int64, np.int64]]
X = data[feature_names]
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)
my_model = RandomForestClassifier(random_state=0).fit(train_X, train_y)

我们将查看数据集的单行(我们任意选择第5行)的SHAP值。对于上下文,我们将在查看SHAP值之前查看原始预测。

row_to_show = 5
data_for_prediction = val_X.iloc[row_to_show]  # 在这里使用1行数据。如果需要,可以使用多行吗
data_for_prediction_array = data_for_prediction.values.reshape(1, -1)


my_model.predict_proba(data_for_prediction_array)

array([[0.29, 0.71]])

该队有70%的可能性有一名球员获得该奖项。
现在,我们将继续研究获取该预测的SHAP值的代码。

import shap  # Shap Values的 数据包

#  创建可以计算SHAP 值的对象
explainer = shap.TreeExplainer(my_model)

# 计算 SHAP 值
shap_values = explainer.shap_values(data_for_prediction)

上面的shap_values对象是一个包含两个数组的列表。第一个数组是消极结果(未获奖)的SHAP值,第二个数组是积极结果(获奖)的SHAP值列表。我们通常根据对积极结果的预测来考虑预测,因此我们将为积极结果提取SHAP值(提取shap_values[1])。

查看原始数组很麻烦,但是shap 包提供了一种很好的方式来可视化结果。

shap.initjs()
shap.force_plot(explainer.expected_value[1], shap_values[1], data_for_prediction)

shap

如果您仔细查看我们创建SHAP值的代码,您会注意到我们在SHAP.TreeexPlainer (my_model)中引用了Trees。但是SHAP包为每种类型的模型都提供了解释器。

  • shap.DeepExplainer 适用于深度学习模型。
  • shap.KernelExplainer 适用于所有模型,尽管它比其他解释器慢,并且它提供了近似值而不是精确的shap 值。
    下面是一个使用KernelExplainer获得类似结果的示例。结果并不相同,因为KernelExplainer给出了一个近似的结果。但结果都是一样的。
# 使用内核SHAP来解释测试集预测
k_explainer = shap.KernelExplainer(my_model.predict_proba, train_X)
k_shap_values = k_explainer.shap_values(data_for_prediction)
shap.force_plot(k_explainer.expected_value[1], k_shap_values[1], data_for_prediction)

这里会出现一堆的提示 这里就不一一展显。

shap

轮到你了

SHAP值是很棒的。将它们与您学过的其他工具一起应用,以解决完整的数据科学场景。


练习部分

设置

此时,您已经拥有了足够的工具,可以将令人信服的解决方案组合在一起,以解决实际问题。您需要为以下数据科学场景的每个部分选择正确的技术。在此过程中,您将使用SHAP值以及其他解释工具。

下面的问题通过使用一些检查代码来反馈您的工作。运行以下单元格来设置我们的反馈系统。

# Get most recent checking code
!pip install -U -t /kaggle/working/ git+https://github.com/Kaggle/learntools.git
from learntools.ml_explainability.ex4 import *
print("Setup Complete")

这里就一系列的安装信息,以及完成设置信息

场景

一家医院一直在与“再入院”作斗争,即他们在病人恢复得足够好之前就让病人出院,病人又带着健康并发症回来了。

医院希望你能帮助确定再次入院风险最高的病人。医生(而不是你的模型)将最终决定何时让每个病人出院;但他们希望你的模型能突出医生在让病人出院时应该考虑的问题。

医院已经给了你相关的病人医疗信息。以下是数据中的特征列列表:

import pandas as pd
data = pd.read_csv('../input/hospital-readmissions/train.csv')
data.columns

显示各列名称

Index(['time_in_hospital', 'num_lab_procedures', 'num_procedures',
       'num_medications', 'number_outpatient', 'number_emergency',
       'number_inpatient', 'number_diagnoses', 'race_Caucasian',
       'race_AfricanAmerican', 'gender_Female', 'age_[70-80)', 'age_[60-70)',
       'age_[50-60)', 'age_[80-90)', 'age_[40-50)', 'payer_code_?',
       'payer_code_MC', 'payer_code_HM', 'payer_code_SP', 'payer_code_BC',
       'medical_specialty_?', 'medical_specialty_InternalMedicine',
       'medical_specialty_Emergency/Trauma',
       'medical_specialty_Family/GeneralPractice',
       'medical_specialty_Cardiology', 'diag_1_428', 'diag_1_414',
       'diag_1_786', 'diag_2_276', 'diag_2_428', 'diag_2_250', 'diag_2_427',
       'diag_3_250', 'diag_3_401', 'diag_3_276', 'diag_3_428',
       'max_glu_serum_None', 'A1Cresult_None', 'metformin_No',
       'repaglinide_No', 'nateglinide_No', 'chlorpropamide_No',
       'glimepiride_No', 'acetohexamide_No', 'glipizide_No', 'glyburide_No',
       'tolbutamide_No', 'pioglitazone_No', 'rosiglitazone_No', 'acarbose_No',
       'miglitol_No', 'troglitazone_No', 'tolazamide_No', 'examide_No',
       'citoglipton_No', 'insulin_No', 'glyburide-metformin_No',
       'glipizide-metformin_No', 'glimepiride-pioglitazone_No',
       'metformin-rosiglitazone_No', 'metformin-pioglitazone_No', 'change_No',
       'diabetesMed_Yes', 'readmitted'],
      dtype='object')

下面是解释字段名的一些快速提示:

  • 你的预测目标是readmitted “再次接纳”
  • 带有diag一词的栏表示病人所患疾病的诊断代码。例如,diag_1_428表示医生说他们的第一次疾病诊断是428428对应什么疾病?你可以在编码本里查一下,但如果没有更多的医学背景,这对你来说也没什么意义。
  • 列名如glimepiride_No表示患者没有服用glimepiride药物。如果该特征值为False,则患者确实服用了 glimepiride(格列美脲)药。
  • medical_specialty开头的特征描述了为病人看病的医生的专业。这些字段中的值都是TrueFalse

你的代码库

在编写处理此场景的代码时,前面教程中的这些代码片段可能会很有用。您仍然需要修改它们,但我们已经将它们复制到这里,以便您不必查找它们。
参考代

参考码如下

计算并显示排列重要性:

import eli5
from eli5.sklearn import PermutationImportance

perm = PermutationImportance(my_model, random_state=1).fit(val_X, val_y)
eli5.show_weights(perm, feature_names = val_X.columns.tolist())

计算并显示部分依赖图:

from matplotlib import pyplot as plt
from sklearn.inspection import PartialDependenceDisplay

feature_name = 'Goal Scored'
PartialDependenceDisplay.from_estimator(my_model, val_X, [feature_name])
plt.show()

计算和显示Shap 值为一个预测:

import shap  # package used to calculate Shap values

data_for_prediction = val_X.iloc[0,:]  # use 1 row of data here. Could use multiple rows if desired

# Create object that can calculate shap values
explainer = shap.TreeExplainer(my_model)
shap_values = explainer.shap_values(data_for_prediction)
shap.initjs()
shap.force_plot(explainer.expected_value[0], shap_values[0], data_for_prediction)

第一步

你已经建立了一个简单的模型,但医生说他们不知道如何评估一个模型,他们希望你向他们展示一些证据,证明这个模型正在做一些符合他们医学直觉的事情。创建任何图形或表格,向他们快速展示模型正在做什么?

他们很忙。所以他们希望你将你的模型概述浓缩成1或2个图形,而不是一长串图形。
我们将在您建立基本模型之后开始。只需运行以下单元格来构建名为“my_model”的模型。

import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

data = pd.read_csv('../input/hospital-readmissions/train.csv')

y = data.readmitted

base_features = [c for c in data.columns if c != "readmitted"]

X = data[base_features]

train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)
my_model = RandomForestClassifier(n_estimators=30, random_state=1).fit(train_X, train_y)

上述正常情况下,用随机森林分类建立模型并拟合,有了模型后,再有以下分析

现在使用下面的单元格创建医生的材料。

这里需要您 填写你的代码

# 填写你的代码
____

答案:

import eli5
from eli5.sklearn import PermutationImportance
perm = PermutationImportance(my_model, random_state=1).fit(val_X, val_y)
eli5.show_weights(perm, feature_names = val_X.columns.tolist())
运行结果如下:
eli5

要了解要显示什么,请运行下面的单元格。

# Run this code cell to receive credit!
q_1.solution()

第二步

看来number_inpatient是一个非常重要的特性。医生们想知道更多这方面的情况。为它们创建一个图表,显示num_inpatient如何影响模型的预测。

# 填写你的代码
____

答案 : 将上述的参数代码中的 Goal Scored 修改为 number_inpatient

from matplotlib import pyplot as plt from sklearn.inspection import
PartialDependenceDisplay

feature_name = ‘number_inpatient’
PartialDependenceDisplay.from_estimator(my_model, val_X, [feature_name])
plt.show()

p

# Check your answer (Run this code cell to receive credit!)
q_2.solution()

第三步

医生们认为,住院治疗次数的增加导致预测的增加是一个好兆头。但是他们不能从这个图中看出这个图的变化是大还是小。他们希望您为time_in_hospital创建类似的东西,以查看其比较效果。

# 填写你的代码
____

答案 : 因为需要查看 time_in_hospital 影响,因此特征修改为time_in_hospital

from matplotlib import pyplot as plt from sklearn.inspection import
PartialDependenceDisplay

feature_name = ‘time_in_hospital’
PartialDependenceDisplay.from_estimator(my_model, val_X, [feature_name])
plt.show()

d

第四步

哇!住院时间似乎一点也不重要。部分依赖性图上的最低值与最高值之间的差异约为5%。
如果这是你的模型得出的结论,医生会相信的。但它似乎很低。数据可能是错误的,或者你的模型比他们预期的更复杂?
他们希望您向他们展示time_in_hospital的每个值的原始再入院率,以便将其与部分依赖图进行比较。

  • 画出那个图。
  • 结果相似还是不同?
# Your Code Here
____

提示:这需要对原始数据进行分组(来自pandas),而不是使用模型

答案

一个简单的pandas组,显示每次住院的平均再入院率。

使用concat将验证数据分开,而不是使用所有原始数据

all_train = pd.concat([train_X, train_y], axis=1)

all_train.groupby([‘time_in_hospital’]).mean().readmitted.plot()
plt.show()

第五步

现在医生们确信你有正确的数据,模型概述看起来是合理的。是时候把它变成他们可以使用的成品了。具体来说,医院希望您创建一个函数patient_risk_factors,该函数执行以下操作

  • 获取单行患者数据(格式与原始数据相同)
  • 创建一个可视化显示患者的哪些特征增加了他们再入院的风险,哪些特征降低了风险,以及这些特征有多重要。

展示每一个特征对再入院风险的每一个微小影响并不重要。只关注病人最重要的特征是可以的。

# Your Code Here
____

提示:这里需要填写显示 SHAP 值,注意要用函数

答案

import shap  # package used to calculate Shap values

sample_data_for_prediction = val_X.iloc[0].astype(float)  # to test function

def patient_risk_factors(model, patient_data):
    # Create object that can calculate shap values
    explainer = shap.TreeExplainer(model)
    shap_values = explainer.shap_values(patient_data)
    shap.initjs()
    return shap.force_plot(explainer.expected_value[1], shap_values[1], patient_data)

继续深入

您有一些强大的工具来了解模型和单独预测。接下来,您将查看SHAP值的聚合,以便将模型级和预测级的解释联系起来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1144884.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第三章 SysML入门|系统建模语言SysML实用指南学习

仅供个人学习记录 UML与SysML的联系 可以稍微参考UML与SysML的联系 UML(统一建模语言)和SysML(系统建模语言)是两种与建模相关的语言,它们之间存在联系和区别。 SysML的图分类如下图所示。 SysML 图概述 这里只…

GZ035 5G组网与运维赛题第3套

2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项(高职组) 赛题第3套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通(35分) 子任务1:5G公共网络部署与调试(15分) 子…

锐捷smartWeb管理系统存在逻辑缺陷漏洞

通过弱口令进行登录 guest/guest 通过低权限用户构造payload: /web/xml/webuser-auth.xml访问漏洞url,直接获得所有账户的等级标志和base64加密的账号密码,解秘后即可登录后台 解密管理员的账号密码 成功登录 文笔生疏,措辞浅…

C++快餐——C++11(1)

文章目录 背景简介统一列表初始化{}初始化initializer_lists初始化 关键字autodecltypenullptr 范围for右值引用和移动语义左值和右值左值引用和右值引用完美转发 默认成员函数总结 背景简介 C11,也被称为C0x(在它被正式标准化之前的名字)&a…

JVM调优(10)JVM的运行时数据区

一、概述 对于 C C 来说,在内存管理领域,JVM既拥有最高的权利,但是同时他们又是从事最基础工作的劳动人员,因为他们担负着每一个对象从开始到结束的维护责任。而对于Java来说,再虚拟机自动内存管理的帮助下&#xff0…

Proteus仿真--花样流水灯(仿真文件+程序)

本文主要介绍基于51单片机的花样流水灯仿真(完整仿真源文件及代码见文末链接) 仿真运行视频 Proteus仿真--花样流水灯(仿真文件程序) 附完整Proteus仿真资料代码资料 链接: https://pan.baidu.com/s/1coEEBQcTQSzWQiSH_nNiUQ?pw…

vm虚拟机保护技术简介EzMachine例题-vm逆向分析

文章目录 前言0x1 虚拟机保护技术原理0x1A 关于调用约定0x1B Handler0x1C 指令 0x2 vm虚拟机逆向 实战[GKCTF 2020]EzMachine题目分析,花指令去除Handler分析脚本编写 前言 关于虚拟机逆向的知识网上很少,我看了几篇感觉都看不太明白,最后还…

如何设置3D模型的凹凸贴图?

1、凹凸贴图的原理? 凹凸贴图(bump mapping)是一种计算机图形技术,用于增强表面的视觉效果,使其看起来具有凹凸感,而实际上并没有改变模型的几何形状。 凹凸贴图的原理基于光照模型。通常,我们…

分布式理论和分布式锁知识点总结

文章目录 (一) 分布式理论算法和协议1)CAP理论总结 2)BASE理论BASE 理论的核心思想基本可用软状态最终一致性 3)Paxos算法Basic Paxos 算法4) Raft算法1 拜占庭将军 5)Gossip协议 (二) 分布式锁分布式锁应该具备哪些条…

U盘RAW格式怎么恢复 U盘RAW格式怎么改过来

当我们遇到U盘变成raw格式时,首先需要了解的是,U盘的raw格式通常是由于文件系统损坏或病毒感染引起的。当U盘变成raw格式时,将导致无法正常访问其中数据。因此,需要我们手动恢复U盘中的相关数据,那么下面就来为大家介绍…

亚信科技:发挥自我优势深入AIGC,并购整合高瞻远瞩致力未来路

【科技明说 | 重磅专题】 亚信科技在IT提供商领域中是一个低调的前行者,在全球通信及大型企业市场中扮演着重要的角色。对于近年来如火如荼AI方面的投入与研究,亚信科技是否也很重视呢? 事实上,是肯定的回答。 在我看…

C++ stack queue 的模拟实现

1.为什么选择 deque 作为 stack 和 queue 的默认容器呢? stack 是一种后进先出的特殊线性数据结构,因此只要具有 push_back() 和 pop_back() 操作的线性结构,都可 以作为 stack 的底层容器,比如 vector 和 list 都可以&#xff1b…

常用字符串函数拓展

文章目录 字符串拓展函数strncpystrncatstrncmpstrstrstrtokstrerrormemcpymemmovememcmpmemset 库函数模拟实现memmoveqsort 我们在学习C语言时已经学习了一些常见的字符串函数,但这还不能满足我们的需求,为此我们拓展了几个常用的字符串函数。 字符串拓…

leetCode 169. 多数元素 + 摩尔投票法

169. 多数元素 - 力扣(LeetCode) 给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。你可以假设数组是非空的,并且给定的数组总是存在多数元素。 class Solution { public…

【教学类-40-02】A4骰子纸模制作2.0(统计表、棋盘)

作品展示 背景需求 上次做了一个骰子1.0(纸盒插口式样),但是无论是裁剪纸模(去掉白边),还是凹造型(立体、黏贴),4/5大班幼儿都感到困难。因此我想让纸模更简单。 1、裁…

OpenCV学习(六)——图像算术运算(加法、融合与按位运算)

图像算术运算 6. 图像算术运算6.1 图像加法6.2 图像融合6.3 按位运算 6. 图像算术运算 6.1 图像加法 OpenCV加法是饱和运算Numpy加法是模运算 import cv2 import numpy as npx np.uint8([250]) y np.uint8([10])# OpenCV加法 print(cv2.add(x, y)) # 25010 260 > 255…

基于Threejs开发的3D点位编辑器

简介 编辑器可以让用户在3D场景中添加、编辑和删除点位,并且支持上传参考模型、多点位类型的添加、上传、编辑、下载和删除、场景视图中点位的拖拽、场景配置等功能。 注:所有操作均在本地。 技术栈 three.js:一个用于创建3D图形的JavaScr…

AN动画基础——摄像头

【AN动画基础——摄像头】 摄像头功能基本动画景深效果 实战 本篇内容:了解摄像头 重点内容:摄像头应用 工 具:Adobe Animate 2022 摄像头功能 在动画制作中,摄像头用于模拟真实摄影过程的视角选择和镜头运动。 摄像头可以决定观…

机器学习-特征选择:如何使用互信息特征选择挑选出最佳特征?

一、引言 特征选择在机器学习中扮演着至关重要的角色,它可以帮助我们从大量的特征中挑选出对目标变量具有最大预测能力的特征。互信息特征选择是一种常用的特征选择方法,它通过计算特征与目标变量之间的互信息来评估特征的重要性。 互信息是信息论中的一…