C语言之 结构体,枚举,联合

news2024/11/16 9:29:08

目录

1.结构体

1.1结构的基础知识

1.2结构的声明 

 1.3 特殊的声明

1.4 结构的自引用

1.5 结构体变量的定义和初始化

1.6 结构体内存对齐

1.7 修改默认对齐数

1.8 结构体传参

2. 位段

2.1 什么是位段

2.2位段的内存分配

2.3 位段的跨平台问题

3. 枚举

3.1 枚举类型的定义

3.2 枚举的优点

3.3 枚举的使用

 4. 联合(共用体)

4.1 联合类型的定义 

4.2 联合的特点

4.3 联合大小的计算


1.结构体

1.1结构的基础知识

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

1.2结构的声明 

struct tag
{
member-list;
}variable-list;

tag是自定义的,member-list是成员列表,variable-list是变量类列可有可无,可以在这里添加s1,s2等结构体变量。 

例如描述一个学生:

struct Stu
{
    char name[20];//名字
    int age;//年龄
    char sex[5];//性别
    char id[20];//学号
}; //分号不能丢

 1.3 特殊的声明

在声明结构的时候,可以不完全的声明。
比如:

//匿名结构体类型
struct
{
    int a;
    char b;
    float c;
}x;
struct
{
    int a;
    char b;
    float c;
}a[20], *p;

 匿名结构体类型是一次性的用法,当用完这个结构体之后,这个结构体会消失。

上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?

//在上面代码的基础上,下面的代码合法吗?
p = &x;

警告:
编译器会把上面的两个声明当成完全不同的两个类型。
所以是非法的。

1.4 结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?

//代码1
struct Node
{
    int data;
    struct Node next;
};
//可行否?
如果可以,那sizeof(struct Node)是多少?

这种写法是错误的,如果可行,sizeof(struct Node)应该是16.

正确的自引用方式:

//代码2
struct Node
{
    int data;
    struct Node* next;
};

注意:

//代码3
typedef struct
{
    int data;
    Node* next;
}Node;
//这样写代码,可行否?
//解决方案:
typedef struct Node
{
    int data;
    struct Node* next;
}Node;

1.5 结构体变量的定义和初始化

有了结构体类型,那如何定义变量,其实很简单。

struct Point
{
    int x;
    int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu //类型声明
{
    char name[15];//名字
    int age; //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
    int data;
    struct Point p;
    struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化

1.6 结构体内存对齐

我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐
 

//练习1
struct S1
{
    char c1;
    int i;
    char c2;
};
printf("%d\n", sizeof(struct S1));
//练习2
struct S2
{
    char c1;
    char c2;
    int i;
};
printf("%d\n", sizeof(struct S2));
//练习3
struct S3
{
    double d;
    char c;
    int i;
};
printf("%d\n", sizeof(struct S3));
//练习4-结构体嵌套问题
struct S4
{
    char c1;
    struct S3 s3;
    double d;
};
printf("%d\n", sizeof(struct S4));

offsetof是一个宏,可直接用,用于计算结构体成员相较于起始位置的偏移量 

考点
如何计算?
首先得掌握结构体的对齐规则:
        1. 第一个成员在与结构体变量偏移量为0的地址处。
        2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
           对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
             ~VS中默认的值为8
3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整
体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。


为什么存在内存对齐?
大部分的参考资料都是如是说的:
1. 平台原因(移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特
定类型的数据,否则抛出硬件异常。

2. 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访
问。

总体来说:
        结构体的内存对齐是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
        让占用空间小的成员尽量集中在一起。

//例如:
struct S1
{
    char c1;
    int i;
    char c2;
};
struct S2
{
    char c1;
    char c2;
    int i;
};

 S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。

1.7 修改默认对齐数

之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
    char c1;
    int i;
    char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
    char c1;
    int i;
    char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
    //输出的结果是什么?
    printf("%d\n", sizeof(struct S1));
    printf("%d\n", sizeof(struct S2));
    return 0;
}

结论:
结构在对齐方式不合适的时候,我么可以自己更改默认对齐数。

1.8 结构体传参

直接上代码:

struct S
{
    int data[1000];
    int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
    printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
    printf("%d\n", ps->num);
}
int main()
{
    print1(s); //传结构体
    print2(&s); //传地址
    return 0;
}

上面的 print1 print2 函数哪个好些?
答案是:首选print2函数。
原因:
 函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
 如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。
结论:
        结构体传参的时候,要传结构体的地址

2. 位段

结构体讲完就得讲讲结构体实现 位段 的能力

2.1 什么是位段

位段的声明和结构是类似的,有两个不同:
        1.位段的成员必须是 int、unsigned int 或signed int
        2.位段的成员名后边有一个冒号和一个数字。
 比如:

struct A
{
    int _a:2;
    int _b:5;
    int _c:10;
    int _d:30;
};

 A就是一个位段类型。
那位段A的大小是多少?

printf("%d\n", sizeof(struct A));

那么为什么是8呢?我们接着往下看

2.2位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

//一个例子
struct S
{
    char a:3;
    char b:4;
    char c:5;
    char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

//空间是如何开辟的?

2.3 位段的跨平台问题

   1. int 位段被当成有符号数还是无符号数是不确定的。
   2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机
       器会出问题。
   3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
   4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是           舍弃剩余的位还是利用,这是不确定的

 总结:

  跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。  
 

3. 枚举

枚举顾名思义就是一一列举。
把可能的取值一一列举。
比如我们现实生活中:

一周的星期一到星期日是有限的7天,可以一一列举。
 性别有:男、女、保密,也可以一一列举。
月份有12个月,也可以一一列举

这里就可以使用枚举了

3.1 枚举类型的定义
 

enum Day//星期
{
    Mon,
    Tues,
    Wed,
    Thur,
    Fri,
    Sat,
    Sun
};
enum Sex//性别
{
    MALE,
    FEMALE,
    SECRET
};
enum Color//颜色
{
    RED,
    GREEN,
    BLUE
};

以上定义的 enum Dayenum Sex enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。
例如:
 

enum Color//颜色
{
    RED=1,
    GREEN=2,
    BLUE=4
};

3.2 枚举的优点

为什么使用枚举?
我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:
1. 增加代码的可读性和可维护性
2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
3. 防止了命名污染(封装)
4. 便于调试
5. 使用方便,一次可以定义多个常量
 

3.3 枚举的使用

enum Color//颜色
{
    RED=1,
    GREEN=2,
    BLUE=4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
clr = 5; //ok??

 4. 联合(共用体)

4.1 联合类型的定义 

联合也是一种特殊的自定义类型
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如:
 

//联合类型的声明
union Un
{
    char c;
    int i;
};
//联合变量的定义
union Un un;
//计算连个变量的大小
printf("%d\n", sizeof(un));

4.2 联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联
合至少得有能力保存最大的那个成员)。

union Un
{
    int i;
    char c;
};
union Un un;
// 下面输出的结果是一样的吗?
printf("%d\n", &(un.i));
printf("%d\n", &(un.c));
//下面输出的结果是什么?
un.i = 0x11223344;
un.c = 0x55;
printf("%x\n", un.i);

第一个输出的结果是一样的。因为联合的成员是共用一块内存空间的。

 第二个输出的结果是11223355.

 面试题:

判断当前计算机的大小端存储

两种解法:

第一种:常规解法

int check_sys()
{
    int a = 1;
    if(*(char*)&a == 1)
        return 1;
    else
        return 0;
}

int main()
{
    int ret = check_sys();
    if(ret == 1)
        printf("小端\n");
    else
        printf("大端\n");
    return 0;
}

  第二种解法:利用联合体的特点

int check_sys()
{
    union Un
    {
        char c;
        int i;
    }u;
    u.i = 1;
    return u.c;
}

int main()
{
    int ret = check_sys();
    if(ret == 1)
        printf("小端\n");
    else
        printf("大端\n");
    return 0;
}

4.3 联合大小的计算

联合的大小至少是最大成员的大小
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
比如:

union Un1
{
    char c[5];
    int i;
};
union Un2
{
    short c[7];
    int i;
};
//下面输出的结果是什么?
printf("%d\n", sizeof(union Un1));
printf("%d\n", sizeof(union Un2));

 Un1的成员里面char c[5]是5,int i是4,所以最大成员是5;对齐数char[5]是1,int i 是4,所以最大对齐数是4;所以Un1的大小至少是5,但5不是4的倍数,所以sizeof(union Un1) = 8.

Un2的成员里面short c[7]是14,int i是4,所以最大成员是14;对齐数short c[7]是2,int i 是4,所以最大对齐数是4;所以Un2的大小至少是14,但14不是4的倍数,所以sizeof(union Un2) = 16. 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1144013.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mybatis简介(二)

1、多表映射 简介一 链接 对于数据库的操作&#xff0c;很多时候我们都是在多表的基础上进行操作的&#xff0c;在这里讲一下多表属性值与列名映射。 案例&#xff1a;这里有一个订单表和一个客户表 CREATE TABLE t_customer (customer_id INT NOT NULL AUTO_INCREMENT, cus…

在 Elasticsearch 中丰富你的 Elasticsearch 文档

作者&#xff1a;David Pilato 对于 Elasticsearch&#xff0c;我们知道联接应该在 “索引时” 而不是查询时完成。 本博文是一系列三篇博文的开始&#xff0c;因为我们可以在 Elastic 生态系统中采取多种方法。 我们将介绍如何在 Elasticsearch 中做到这一点。 下一篇博文将介…

node实战——后端koa结合jwt连接mysql实现权限登录(node后端就业储备知识)

文章目录 ⭐前言⭐ 环境准备⭐ 实现过程⭐ mysql 配置⭐路由前的准备⭐账号注册生成token⭐账号登录生成token⭐token登录 ⭐ 自测过程截图⭐总结⭐结束 ⭐前言 大家好&#xff0c;我是yma16&#xff0c;本文分享关于node实战——后端koa项目配置jwt实现登录注册&#xff08;n…

1230. K倍区间(前缀和)

题目&#xff1a; 1230. K倍区间 - AcWing题库 突破口&#xff1a; 区间遍历枚举一般先枚举右端点&#xff0c;再枚举左端点&#xff0c;注意由右端点限制左端点 思路&#xff1a;1.暴力 #include<cstdio> #include<iostream> #include<algorithm> #incl…

Win 7 VPN拨号错误734.

正在验证用户名和密码错误 734: PPP 链接控制协议终止。 如果您继续收到错误信息&#xff0c;您可以启用日志记录来做分析。 其他电脑拨号都成功.就这个电脑不行.找了很久,修改之后报好成功 ************************** 找到是跟下面两个两个注册表信息有关,尤其是第一个我…

基于Pytest+Requests+Allure实现接口自动化测试!

一、整体结构 框架组成&#xff1a;pytestrequestsallure设计模式&#xff1a; 关键字驱动项目结构&#xff1a; 工具层&#xff1a;api_keyword/参数层&#xff1a;params/用例层&#xff1a;case/数据驱动&#xff1a;data_driver/数据层&#xff1a;data/逻辑层&#xff1a…

75 寻找旋转排序数组中的最小值

寻找旋转排序数组中的最小值 题解1 一次循环(正确理解题意)题解2 二分 已知一个长度为 n 的数组&#xff0c;预先按照 升序排列&#xff0c;经由 1 到 n 次 旋转 后&#xff0c;得到输入数组。例如&#xff0c;原数组 nums [0,1,2,4,5,6,7] 在变化后可能得到&#xff1a; …

刚刚:2023阿里云双十一优惠活动上线了!

2023阿里云双十一优惠活动「金秋云创季」开始啦&#xff0c;10月27日到10月31日可以领满减优惠&#xff0c;到11月1日和11月11日之间可以购买云服务器等产品&#xff0c;11.12到11.30日赢最高百万上云抵扣金&#xff0c;阿里云百科aliyunbaike.com分享2023阿里云双十一优惠活动…

Xray的简单使用

xray 简介 xray 是一款功能强大的安全评估工具&#xff0c;由多名经验丰富的一线安全从业者呕心打造而成&#xff0c;主要特性有: 检测速度快。发包速度快; 漏洞检测算法效率高。支持范围广。大至 OWASP Top 10 通用漏洞检测&#xff0c;小至各种 CMS 框架 POC&#xff0c;均…

前端实现打印功能Print.js

前端实现打印的方式有很多种&#xff0c;本人恰好经历了几个项目都涉及到了前端打印&#xff0c;目前较为推荐Print.js来实现前端打印 话不多说&#xff0c;直接上教程 官方链接: Print.js官网 在项目中如何下载Print.js 使用npm下载&#xff1a;npm install print-js --sav…

python 从mssql取出datetime2类型之后格式化

我mssql是datetime2类型&#xff0c;用df取出之后发现是个纳秒的int&#xff08;1698419713000000000 这种&#xff09; 所以格式化的话就需要变成秒为单位&#xff0c;他们之间是10的9次方倍。所以先除以1e9之后用datetime.datetime.fromtimestamp()转换之后再format就行了 l…

CCF CSP认证历年题目自练 Day39

题目 试题编号&#xff1a; 201312-5 试题名称&#xff1a; I’m stuck! 时间限制&#xff1a; 1.0s 内存限制&#xff1a; 256.0MB 问题描述&#xff1a; 问题描述   给定一个R行C列的地图&#xff0c;地图的每一个方格可能是’#‘, ‘’, ‘-’, ‘|’, ‘.’, ‘S’, ‘…

系列十九、循环依赖(一)

一、概述 循环依赖是指&#xff0c;多个bean之间相互依赖&#xff0c;形成了一个闭环。比如A依赖于B、B依赖于C、C依赖于A&#xff0c;形成了一个圈。 二、两种方式对循环依赖的影响 2.1、官网说明 2.2、结论 我们AB循环依赖问题只要A的注入方式是setter、并且是singleton&am…

Android14 WMS启动流程

一 概述 本文Android14源代码可参考&#xff1a;Search 在 Android 系统中&#xff0c;从设计的角度来看&#xff0c;窗口管理系统是基于 C/S 模式的。整个窗口系统分为服务端和客户端两大部分&#xff0c;客户端负责请求创建窗口和使用窗口&#xff0c;服务端完成窗口的维护…

智慧工地管理系统源码-数字孪生智慧工地可视化解决方案

一、智慧工地建设背景 我国经济发展正从传统粗放式的高速增长阶段&#xff0c;进入高效率、低成本、可持续的中高速增长阶段。随着现代建筑的复杂度和体量等不断增加&#xff0c;施工现场管理的内容越来越多&#xff0c;管理的技术难度和要求在不断提高。传统的施工现场管理模…

用超声波清洗机洗眼镜的有哪些?清洁力强的超声波清洗机不能错过

超声波清洗机在清洗眼镜方面表现出色&#xff0c;其强大的清洁能力可以彻底清除眼镜上的污垢和细菌。这种清洗方式被认为是一种高效且卫生的清洁方式&#xff0c;因为它利用高频振动和微射流打击力来清除污垢和细菌&#xff0c;而不是使用化学物质。对于那些长时间佩戴眼镜或者…

windows + ubuntu + vscode开发环境配置安装

一、卸载WSL/WSL2 如果安装了windows子系统的朋友&#xff0c;可以选择继续使用。或者提前卸载WSL&#xff0c;再选择安装虚拟机。虚拟机占用内存较大&#xff0c;WSL可能对于开发的一些需求还有欠缺。根据自己的实际情况进行选择。 WIN10/11安装WSL(请参考官方资料&#xff0c…

TSINGSEE青犀智慧仓储可视化视频智能监管系统方案

一、背景与需求 对于现在很多大型工厂或者物流基地来说&#xff0c;仓库无疑是存放物品的重点场所。仓储存放着大量货物&#xff0c;同时存在大量的辅助设备&#xff0c;需要进行全方位的监管&#xff0c;以避免发生安全事故&#xff0c;造成财产损失。原有的人工巡检方式已无…

Ubuntu安装AdGuardhome(树莓派安装AdGuardhome)

Ubuntu安装AdGuardhome&树莓派安装AdGuardhome 1.什么是AdGuardhome2.设备情况3.3.1.下载AdGuardhome3.2.解压3.3.安装3.4.仪表盘配置3.5.dns黑名单添加3.6.DNS白名单设置3.7常规设置3.8. dns设置3.9.加密设置 4.客户端设置 1.什么是AdGuardhome AdGuard Home 是网络范围的…

传奇服务器配置如何搭建

传奇服务器在中国页游发展中作为一个经典制作吸引了很多玩家的喜欢&#xff0c;很多人也想搭建一个属于自己团队的传奇游戏服务器&#xff0c;今天就让小编来讲一讲该如何搭建吧&#xff01; 首先是硬件配置&#xff0c;传奇游戏的服务器需要较高的硬件配置&#xff0c;选择双路…