一、监督学习
例如房屋价格的数据集。在监督学习中,我们将已知的房价作为"正确答案",并将这些价格与房屋的特征数据一起提供给学习算法。学习算法使用这些已知答案的数据来学习模式和关系,以便在未知情况下预测其他房屋的价格。这就是监督学习, 通过提供正确答案来训练算法以做出准确的预测或估计。
二、回归问题
回归: 推测出这一系列连续值属性。
回归问题: 根据输入特征来预测或推测出连续的数值结果。举例来说,房价预测可以被视为典型的回归问题,其中模型的任务是通过学习输入特征(如房屋的面积、地理位置等)与房价之间的关系,来预测出一个连续的数值,即房价。
三、分类问题
分类问题是将输入数据分为不同的离散类别或标签。这些类别可以包括两个或多个不同的取值,例如0、1、2、3,每个值代表不同的类别或标签。在分类问题中,算法的任务是对给定的输入数据进行分类,将其归入相应的类别中。
三、怎么处理无限多个特征
通过支持向量机(SVM),可以利用巧妙的数学技巧来处理具有无限多个特征的数据,从而使计算机能够有效地处理这些复杂的特征集。
参考资料:
[中英字幕]吴恩达机器学习系列课程
黄海广博士 - 吴恩达机器学习个人笔记