基于YOLOv8模型的烟雾目标检测系统(PyTorch+Pyside6+YOLOv8模型)

news2025/1/3 20:02:08

摘要:基于YOLOv8模型的烟雾目标检测系统可用于日常生活中检测与定位烟雾目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种烟雾目标检测模型,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的烟雾数据集手动标注了烟雾这一个类别,数据集总计21578张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的烟雾检测识别数据集包含训练集15096张图片,验证集4322张图片,选取部分数据部分样本数据集如下图所示。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1138138.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【面试题】面试官:如何判断两个数组的内容是否相等

给大家推荐一个实用面试题库 1、前端面试题库 (面试必备) 推荐:★★★★★ 地址:web前端面试题库 题目 给定两个数组,判断两数组内容是否相等。 不使用排序不考虑元素位置 例: [1, 2, 3]…

【软件测试】了解JUnit单元测试框架常用注解

目录 1、认识JUnit 2、Junit中常见的注解 1、Test 2、Disabled 3、BeforeAll和AfterAll 4、BeforeEach和AfterEach 5、 ParameterizedTest:参数化 6、order 3、断言 1、断言相等【Assertions.assertEquals(预期,比较值)】;相等测试通…

RabbitMQ (4)

RabbitMQ (4) 文章目录 1. 死信的概念2. 死信的来源3. 死信代码案例3.1 TTL 过期时间3.2 超过队列最大长度3.3 拒绝消息 前言   上文我们已经学习完 交换机 ,知道了几个交换机的使用 ,下面我们来学习一下 死信队列 1. 死信的概念 先从概念解释上搞清楚这…

契约锁助力电子检测报告应用,杜绝假证书、出证更便捷

国家市场监管总局发布的最新数据显示:2022年,全国5.2万家检验检测机构出具检验检测报告共6.5亿份。按照一份纸质报告3-5页、成本约15元计算,“电子检测报告”的应用可以帮助检验检测行业一年节省约27亿张纸、97.5亿元的成本费。 引入电子签章…

【算法小课堂】深入理解前缀和算法

前缀和是指某序列的前n项和,可以把它理解为数学上的数列的前n项和,而差分可以看成前缀和的逆运算。合理的使用前缀和与差分,可以将某些复杂的问题简单化。 我们通过一个例子来理解前缀和算法的优势: 一维前缀和: ww…

10.26课上)计数排序,分割字符串

课上 计数排序 思路就是用数组下标对应元素,记录完后从头遍历,填到新数组里 和为零的最长子段 子段必须是要在原序列的基础上取出来的,相对顺序不变,而且没有间隔 用前缀和,如果一个子序列的和为0,那么…

【python海洋专题三十】画南海115°E的温度剖面图

【python海洋专题三十】画南海115E的温度剖面图 【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件 【python海洋专题二】读取水深nc文件并水深地形图 【python海洋专题三】图像修饰之画布和坐标轴 【Python海洋专题四】之水深地图图像修饰 【Python海洋专题五】…

FL Studio2024重磅更新 包含FL水果21.1破解版安装包下载

FL Studio是一款非常好用方便的音频媒体制作工具,它的功能是非常的强大全面的,想必那些喜欢音乐创作的朋友们应该都知道这款软件是多么的好用吧,它还能够给用户们带来更多的创作灵感,进一步加强提升我们的音乐制作能力。该软件还有…

c语言进制的转换16进制转换10进制

c语言进制的转换16进制转换10进制与16转10 c语言的进制的转换 c语言进制的转换16进制转换10进制与16转10一、16进制的介绍二、16进制转换10进制方法 一、16进制的介绍 十六进制: 十六进制逢十六进一,所有的数组是0到9和A到F组成,其中A代表10…

RLHF系统设计关键问答及案例

目录 RLHF介绍RLHF是什么RLHF适用于哪些任务RLHF和其他构建奖励模型的方法相比有何优劣什么样的人类反馈才是好的反馈RLHF算法有哪些类别,各有什么优缺点RLHF采用人类反馈会带来哪些局限如何降低人类反馈带来的负面影响案例 RLHF介绍 RLHF(Reinforcemen…

Linux创建逻辑卷并扩容(超详细)

目录 ​编辑 一、概念解析 1、LV逻辑卷 2、PV物理卷 3、VG卷组 二、扩容前准备 三、创建逻辑卷并扩容 1、打开虚拟机 2、进入root用户 3、查看新加入的硬盘 4、创建主分区 5、创建物理卷 6、打包为一个卷组 7、创建逻辑卷 8、格式化逻辑卷 9、挂载逻辑卷--开机自…

企业如何安全跨国传输30T文件数据

对于一些对数据敏感性比较高的企业,如IT企业和国企等,跨国数据传输是当今企业面临的一个重要挑战,尤其是当数据量达到30T这样的规模时,如何保证数据的速度、安全和合规性,就成为了企业必须考虑的问题。本文将从以下几个…

pytorch-fastrcnn识别王者荣耀敌方英雄血条

文章目录 前言效果如下实现训练数据获得训练数据和测试数据yaml文件训练py画框文件的修改py测试py 前言 最近看王者荣耀视频看到了一个别人提供的一个百里自动设计解决方案,使用一个外设放在百里的二技能上,然后拖动外设在屏幕上滑动,当外设检测到有敌方英雄时外设自动松开百里…

为什么企业都在建立指标体系,有什么用途?

什么是指标体系 指标是指企业从不同角度梳理日常业务活动,把积累的庞大数据提炼成不同的业务指标,然后反过来用指标来指代具体的业务活动。 指标体系则是把这些从不同部门、业务、人员中提炼出的业务指标融合汇总到一起,形成一个指标系统&a…

JavaScript进阶知识汇总~

JavaScript 进阶 给大家推荐一个实用面试题库 1、前端面试题库 (面试必备) 推荐:★★★★★ 地址:web前端面试题库 1.原型链入门 1) 构造函数 当我们自定义一个函数时(箭头函数与生成器函数除外),这个函…

PyQt5写一个Python代码执行器

# Author : 小红牛 # 微信公众号:WdPython import sys from PyQt5.QtWidgets import QApplication, QLabel, QLineEdit, QPushButton, QVBoxLayout, QWidgetdef execute_code():# 获取输入的代码code code_input.text()# 执行代码exec(code)# 创建应用程序和窗口 a…

数智化推送助力用户精准分层,MobPush是如何实现用户价值变现的

随着移动设备普及,移动应用市场日益趋于饱和,传统的拉新促活、提升APP渗透率,利用庞大的用户流量带来的广告收入、第三方合作等方式实现价值变现的路径已越来越窄,拉新促活成本的高企不下进一步限制了这种价值增长方式的可行性。因…

Rookit系列二【文件隐藏】【支持Win7 x32/x64 ~ Win10 x32/x64平台的NTFS文件系统】

文章目录 前言探究代码演示 前言 文件隐藏的方法有很多,这里分享的是一种通过内核文件重定向的方式动态规避检测的方法。举例:假设有一个安全软件A,A要扫描文件B,B是我们想要隐藏的文件。那么我们在内核中将A打开文件B的操作重定…

Qt 实现侧边栏滑出菜单效果

1.效果图 2.实现原理 这里做了两个widget,一个是 展示底图widget,一个是 展示动画widget。 这两个widget需要重合。动画widget需要设置属性叠加到底图widget上面,设置如下属性: setWindowFlags(Qt::FramelessWindowHint | Qt::…

2023/10/26MySQL学习

事务 询问当前是什么提交方式 1代表默认提交,0代表手动提交 将事务设为手动提交 将事务设置为手动提交后,mysql语句只会执行,但不会对原本表中数据进行更改, 只有执行以下两个语句之一,才会继续进行 commit完成原本操作,更改数据 rollback取消原来事务,不会进行任何更改 如…