Python数据挖掘:入门、进阶与实用案例分析——基于非侵入式负荷检测与分解的电力数据挖掘

news2024/11/14 14:04:10

文章目录

  • 摘要
  • 01 案例背景
  • 02 分析目标
  • 03 分析过程
  • 04 数据准备
  • 05 属性构造
  • 06 模型训练
  • 07 性能度量
  • 08 推荐阅读
  • 赠书活动

摘要

本案例将根据已收集到的电力数据,深度挖掘各电力设备的电流、电压和功率等情况,分析各电力设备的实际用电量,进而为电力公司制定电能能源策略提供一定的参考依据。更多详细内容请参考《Python数据挖掘:入门进阶与实用案例分析》一书。

在这里插入图片描述

01 案例背景

为了更好地监测用电设备的能耗情况,电力分项计量技术随之诞生。电力分项计量对于电力公司准确预测电力负荷、科学制定电网调度方案、提高电力系统稳定性和可靠性有着重要意义。对用户而言,电力分项计量可以帮助用户了解用电设备的使用情况,提高用户的节能意识,促进科学合理用电。
在这里插入图片描述

02 分析目标

本案例根据非侵入式负荷检测与分解的电力数据挖掘的背景和业务需求,需要实现的目标如下。

  • 分析每个用电设备的运行属性。

  • 构建设备判别属性库。

  • 利用K最近邻模型,实现从整条线路中“分解”出每个用电设备的独立用电数据。

03 分析过程

在这里插入图片描述

04 数据准备

  1. 数据探索
    在本案例的电力数据挖掘分析中,不会涉及操作记录数据。因此,此处主要获取设备数据、周波数据和谐波数据。在获取数据后,由于数据表较多,每个表的属性也较多,所以需要对数据进行数据探索分析。在数据探索过程中主要根据原始数据特点,对每个设备的不同属性对应的数据进行可视化,得到的部分结果如图1~图3所示。
    在这里插入图片描述

图1 无功功率和总无功功率

在这里插入图片描述

图2 电流轨迹

在这里插入图片描述

图3 电压轨迹

根据可视化结果可以看出,不同设备之间的电流、电压和功率属性各不相同。

对数据属性进行可视化如代码清单1所示。

代码清单1 对数据属性进行可视化

import pandas as pd

import matplotlib.pyplot as plt

import os

 

filename = os.listdir('../data/附件1')  # 得到文件夹下的所有文件名称

n_filename = len(filename)  

# 给各设备的数据添加操作信息,画出各属性轨迹图并保存

def fun(a):

    save_name = ['YD1', 'YD10', 'YD11', 'YD2', 'YD3', 'YD4',

           'YD5', 'YD6', 'YD7', 'YD8', 'YD9']

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签

    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

    for i in range(a):

        Sb = pd.read_excel('../data/附件1/' + filename[i], '设备数据', index_col = None)

        Xb = pd.read_excel('../data/附件1/' + filename[i], '谐波数据', index_col = None)

        Zb = pd.read_excel('../data/附件1/' + filename[i], '周波数据', index_col = None)

        # 电流轨迹图

        plt.plot(Sb['IC'])

        plt.title(save_name[i] + '-IC')

        plt.ylabel('电流(0.001A)')

        plt.show()

        # 电压轨迹图

        lt.plot(Sb['UC'])

        plt.title(save_name[i] + '-UC')

        plt.ylabel('电压(0.1V)')

        plt.show()

        # 有功功率和总有功功率

        plt.plot(Sb[['PC', 'P']])

        plt.title(save_name[i] + '-P')

        plt.ylabel('有功功率(0.0001kW)')

        plt.show()

        # 无功功率和总无功功率

        plt.plot(Sb[['QC', 'Q']])

        plt.title(save_name[i] + '-Q')

        plt.ylabel('无功功率(0.0001kVar)')

        plt.show()

        # 功率因数和总功率因数

        plt.plot(Sb[['PFC', 'PF']])

        plt.title(save_name[i] + '-PF')

        plt.ylabel('功率因数(%)')

        plt.show()

        # 谐波电压

        plt.plot(Xb.loc[:, 'UC02':].T)

        plt.title(save_name[i] + '-谐波电压')

        plt.show()

        # 周波数据

        plt.plot(Zb.loc[:, 'IC001':].T)

        plt.title(save_name[i] + '-周波数据')

        plt.show()

 

fun(n_filename)
  1. 缺失值处理
    通过数据探索,发现数据中部分“time”属性存在缺失值,需要对这部分缺失值进行处理。由于每份数据中“time”属性的缺失时间段长不同,所以需要进行不同的处理。对于每个设备数据中具有较大缺失时间段的数据进行删除处理,对于具有较小缺失时间段的数据使用前一个值进行插补。

在进行缺失值处理之前,需要将训练数据中所有设备数据中的设备数据表、周波数据表、谐波数据表和操作记录表,以及测试数据中所有设备数据中的设备数据表、周波数据表和谐波数据表都提取出来,作为独立的数据文件,生成的部分文件如图4所示。
在这里插入图片描述

图4 提取数据文件部分结果

代码清单2 提取数据文件

提取数据文件如代码清单2所示。

# 将xlsx文件转化为CSV文件

import glob

import pandas as pd

import math

 

def file_transform(xls):

    print('共发现%s个xlsx文件' % len(glob.glob(xls)))

    print('正在处理............')

    for file in glob.glob(xls):  # 循环读取同文件夹下的xlsx文件

        combine1 = pd.read_excel(file, index_col=0, sheet_name=None)

        for key in combine1:

            combine1[key].to_csv('../tmp/' + file[8: -5] + key + '.csv', encoding='utf-8')

    print('处理完成')

 

xls_list = ['../data/附件1/*.xlsx', '../data/附件2/*.xlsx']

file_transform(xls_list[0])  # 处理训练数据

file_transform(xls_list[1])  # 处理测试数据

提取数据文件完成后,对提取的数据文件进行缺失值处理,处理后生成的部分文件如图5所示。
在这里插入图片描述

图5 缺失值处理后的部分结果

缺失值处理如代码清单3所示。

代码清单3 缺失值处理

# 对每个数据文件中较大缺失时间点数据进行删除处理,较小缺失时间点数据进行前值替补

def missing_data(evi):

    print('共发现%s个CSV文件' % len(glob.glob(evi)))

    for j in glob.glob(evi):

        fr = pd.read_csv(j, header=0, encoding='gbk')

        fr['time'] = pd.to_datetime(fr['time'])

        helper = pd.DataFrame({'time': pd.date_range(fr['time'].min(), fr['time'].max(), freq='S')})

        fr = pd.merge(fr, helper, on='time', how='outer').sort_values('time')

        fr = fr.reset_index(drop=True)

 

        frame = pd.DataFrame()

        for g in range(0, len(list(fr['time'])) - 1):

            if math.isnan(fr.iloc[:, 1][g + 1]) and math.isnan(fr.iloc[:, 1][g]):

                continue

            else:

                scop = pd.Series(fr.loc[g])

                frame = pd.concat([frame, scop], axis=1)

        frame = pd.DataFrame(frame.values.T, index=frame.columns, columns=frame.index)

        frames = frame.fillna(method='ffill')

        frames.to_csv(j[:-4] + '1.csv', index=False, encoding='utf-8')

    print('处理完成')

 

evi_list = ['../tmp/附件1/*数据.csv', '../tmp/附件2/*数据.csv']

missing_data(evi_list[0])  # 处理训练数据

missing_data(evi_list[1])  # 处理测试数据

05 属性构造

虽然在数据准备过程中对属性进行了初步处理,但是引入的属性太多,而且这些属性之间存在重复的信息。为了保留重要的属性,建立精确、简单的模型,需要对原始属性进一步筛选与构造。

  1. 设备数据
    在数据探索过程中发现,不同设备的无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数差别很大,具有较高的区分度,故本案例选择无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数作为设备数据的属性构建判别属性库。

处理好缺失值后,每个设备的数据都由一张表变为了多张表,所以需要将相同类型的数据表合并到一张表中,如将所有设备的设备数据表合并到一张表当中。同时,因为缺失值处理的其中一种方式是使用前一个值进行插补,所以产生了相同的记录,需要对重复出现的记录进行处理,处理后生成的数据表如表1所示。

表1 合并且去重后的设备数据

在这里插入图片描述
合并且去重设备数据如代码清单4所示。

代码清单4 合并且去重设备数据

import glob

import pandas as pd

import os

 

# 合并11个设备数据及处理合并中重复的数据

def combined_equipment(csv_name):

    # 合并

    print('共发现%s个CSV文件' % len(glob.glob(csv_name)))

    print('正在处理............')

    for i in glob.glob(csv_name):  # 循环读取同文件夹下的CSV文件

        fr = open(i, 'rb').read()

        file_path = os.path.split(i)

        with open(file_path[0] + '/device_combine.csv', 'ab') as f:

            f.write(fr)

    print('合并完毕!')

    # 去重

    df = pd.read_csv(file_path[0] + '/device_combine.csv', header=None, encoding='utf-8')

    datalist = df.drop_duplicates()

    datalist.to_csv(file_path[0] + '/device_combine.csv', index=False, header=0)

    print('去重完成')

 

csv_list = ['../tmp/附件1/*设备数据1.csv', '../tmp/附件2/*设备数据1.csv']

combined_equipment(csv_list[0])  # 处理训练数据

combined_equipment(csv_list[1])  # 处理测试数据
  1. 周波数据
    在数据探索过程中发现,周波数据中的电流随着时间的变化有较大的起伏,不同设备的周波数据中的电流绘制出来的折线图的起伏不尽相同,具有明显的差异,故本案例选择波峰和波谷作为周波数据的属性构建判别属性库。

由于原始的周波数据中并未存在电流的波峰和波谷两个属性,所以需要进行属性构建,构建生成的数据表如表2所示。

表2 构建周波数据中的属性生成的数据

在这里插入图片描述
构建周波数据中的属性代码如代码清单5所示。

代码清单5 构建周波数据中的属性

# 求取周波数据中电流的波峰和波谷作为属性参数

import glob

import pandas as pd

from sklearn.cluster import KMeans

import os

 

def cycle(cycle_file):

    for file in glob.glob(cycle_file):

        cycle_YD = pd.read_csv(file, header=0, encoding='utf-8')

        cycle_YD1 = cycle_YD.iloc[:, 0:128]

        models = []

        for types in range(0, len(cycle_YD1)):

            model = KMeans(n_clusters=2, random_state=10)

            model.fit(pd.DataFrame(cycle_YD1.iloc[types, 1:]))  # 除时间以外的所有列

            models.append(model)

 

        # 相同状态间平稳求均值

        mean = pd.DataFrame()

        for model in models:

            r = pd.DataFrame(model.cluster_centers_, )  # 找出聚类中心

            r = r.sort_values(axis=0, ascending=True, by=[0])

            mean = pd.concat([mean, r.reset_index(drop=True)], axis=1)

        mean = pd.DataFrame(mean.values.T, index=mean.columns, columns=mean.index)

        mean.columns = ['波谷', '波峰']

        mean.index = list(cycle_YD['time'])

        mean.to_csv(file[:-9] + '波谷波峰.csv', index=False, encoding='gbk ')

 

cycle_file = ['../tmp/附件1/*周波数据1.csv', '../tmp/附件2/*周波数据1.csv']

cycle(cycle_file[0])  # 处理训练数据

cycle(cycle_file[1])  # 处理测试数据

 

# 合并周波的波峰波谷文件

def merge_cycle(cycles_file):

    means = pd.DataFrame()

    for files in glob.glob(cycles_file):

        mean0 = pd.read_csv(files, header=0, encoding='gbk')

        means = pd.concat([means, mean0])

    file_path = os.path.split(glob.glob(cycles_file)[0])

    means.to_csv(file_path[0] + '/zuhe.csv', index=False, encoding='gbk')

    print('合并完成')

 

cycles_file = ['../tmp/附件1/*波谷波峰.csv', '../tmp/附件2/*波谷波峰.csv']

merge_cycle(cycles_file[0])  # 训练数据

merge_cycle(cycles_file[1])  # 测试数据

06 模型训练

在判别设备种类时,选择K最近邻模型进行判别,利用属性构建而成的属性库训练模型,然后利用训练好的模型对设备1和设备2进行判别。构建判别模型并对设备种类进行判别,如代码清单6所示。

代码清单6 建立判别模型并对设备种类进行判别

import glob

import pandas as pd

from sklearn import neighbors

import pickle

import os

 

# 模型训练

def model(test_files, test_devices):

    # 训练集

    zuhe = pd.read_csv('../tmp/附件1/zuhe.csv', header=0, encoding='gbk')

    device_combine = pd.read_csv('../tmp/附件1/device_combine.csv', header=0, encoding='gbk')

    train = pd.concat([zuhe, device_combine], axis=1)

    train.index = train['time'].tolist()  # 把“time”列设为索引

    train = train.drop(['PC', 'QC', 'PFC', 'time'], axis=1)

    train.to_csv('../tmp/' + 'train.csv', index=False, encoding='gbk')

    # 测试集

    for test_file, test_device in zip(test_files, test_devices):

        test_bofeng = pd.read_csv(test_file, header=0, encoding='gbk')

        test_devi = pd.read_csv(test_device, header=0, encoding='gbk')

        test = pd.concat([test_bofeng, test_devi], axis=1)

        test.index = test['time'].tolist()  # 把“time”列设为索引

        test = test.drop(['PC', 'QC', 'PFC', 'time'], axis=1)

 

        # K最近邻

        clf = neighbors.KNeighborsClassifier(n_neighbors=6, algorithm='auto')

        clf.fit(train.drop(['label'], axis=1), train['label'])

        predicted = clf.predict(test.drop(['label'], axis=1))

        predicted = pd.DataFrame(predicted)

        file_path = os.path.split(test_file)[1]

        test.to_csv('../tmp/' + file_path[:3] + 'test.csv', encoding='gbk')

        predicted.to_csv('../tmp/' + file_path[:3] + 'predicted.csv', index=False, encoding='gbk')

        with open('../tmp/' + file_path[:3] + 'model.pkl', 'ab') as pickle_file:

            pickle.dump(clf, pickle_file)

        print(clf)

 

model(glob.glob('../tmp/附件2/*波谷波峰.csv'),

      glob.glob('../tmp/附件2/*设备数据1.csv'))

07 性能度量

根据代码清单6的设备判别结果,对模型进行模型评估,得到的结果如下,混淆矩阵如图7所示,ROC曲线如图8所示 。

模型分类准确度: 0.7951219512195122

模型评估报告:

               precision    recall  f1-score   support

         0.0       1.00      0.84      0.92        64

        21.0       0.00      0.00      0.00         0

        61.0       0.00      0.00      0.00         0

        91.0       0.78      0.84      0.81        77

        92.0       0.00      0.00      0.00         5

        93.0       0.76      0.75      0.75        59

       111.0       0.00      0.00      0.00         0

 

        accuracy                                0.80        205

     macro avg       0.36      0.35      0.35       205

weighted avg       0.82      0.80      0.81       205

 

计算auc:0.8682926829268293

注:此处部分结果已省略。
在这里插入图片描述

图7 混淆矩阵

在这里插入图片描述

图8 ROC曲线

模型评估如代码清单7所示。

代码清单7 模型评估

import glob

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import metrics

from sklearn.preprocessing import label_binarize

import os

import pickle

 

# 模型评估

def model_evaluation(model_file, test_csv, predicted_csv):

    for clf, test, predicted in zip(model_file, test_csv, predicted_csv):

        with open(clf, 'rb') as pickle_file:

            clf = pickle.load(pickle_file)

        test = pd.read_csv(test, header=0, encoding='gbk')

        predicted = pd.read_csv(predicted, header=0, encoding='gbk')

        test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']

        print('模型分类准确度:', clf.score(test.drop(['label', 'time'], axis=1), test['label']))

        print('模型评估报告:\n', metrics.classification_report(test['label'], predicted))

 

        confusion_matrix0 = metrics.confusion_matrix(test['label'], predicted)

        confusion_matrix = pd.DataFrame(confusion_matrix0)

        class_names = list(set(test['label']))

 

        tick_marks = range(len(class_names))

        sns.heatmap(confusion_matrix, annot=True, cmap='YlGnBu', fmt='g')

        plt.xticks(tick_marks, class_names)

        plt.yticks(tick_marks, class_names)

        plt.tight_layout()

        plt.title('混淆矩阵')

        plt.ylabel('真实标签')

        plt.xlabel('预测标签')

        plt.show()

        y_binarize = label_binarize(test['label'], classes=class_names)

        predicted = label_binarize(predicted, classes=class_names)

 

        fpr, tpr, thresholds = metrics.roc_curve(y_binarize.ravel(), predicted.ravel())

        auc = metrics.auc(fpr, tpr)

        print('计算auc:', auc)  

        # 绘图

        plt.figure(figsize=(8, 4))

        lw = 2

        plt.plot(fpr, tpr, label='area = %0.2f' % auc)

        plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')

        plt.fill_between(fpr, tpr, alpha=0.2, color='b')

        plt.xlim([0.0, 1.0])

        plt.ylim([0.0, 1.05])

        plt.xlabel('1-特异性')

        plt.ylabel('灵敏度')

        plt.title('ROC曲线')

        plt.legend(loc='lower right')

        plt.show()

 

model_evaluation(glob.glob('../tmp/*model.pkl'),

                 glob.glob('../tmp/*test.csv'),

                 glob.glob('../tmp/*predicted.csv'))

根据分析目标,需要计算实时用电量。实时用电量计算的是瞬时的用电器的电流、电压和时间的乘积,公式如下。

W = P·100/3600,P = U·I

其中,为实时用电量,单位是0.001kWh。为功率,单位为W。

实时用电量计算,得到的实时用电量如表3所示。

表3 实时用电量

![在这里插入图片描述](https://img-blog.csdnimg.cn/bcb02376b274434db46eb4576b17582d.png#pic_center) 计算实时用电量如代码清单8所示。

代码清单8 计算实时用电量

# 计算实时用电量并输出状态表

def cw(test_csv, predicted_csv, test_devices):

    for test, predicted, test_device in zip(test_csv, predicted_csv, test_devices):

        # 划分预测出的时刻表

        test = pd.read_csv(test, header=0, encoding='gbk')

        test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']

        test['time'] = pd.to_datetime(test['time'])

        test.index = test['time']

        predicteds = pd.read_csv(predicted, header=0, encoding='gbk')

        predicteds.columns = ['label']

        indexes = []

        class_names = list(set(test['label']))

        for j in class_names:

            index = list(predicteds.index[predicteds['label'] == j])

            indexes.append(index)

 

        # 取出首位序号及时间点

        from itertools import groupby  # 连续数字

        dif_indexs = []

        time_indexes = []

        info_lists = pd.DataFrame()

        for y, z in zip(indexes, class_names):

            dif_index = []

            fun = lambda x: x[1] - x[0]

            for k, g in groupby(enumerate(y), fun):

                dif_list = [j for i, j in g]  # 连续数字的列表

                if len(dif_list) > 1:

                    scop = min(dif_list)  # 选取连续数字范围中的第一个

                else:

                    scop = dif_list[0   ]

                dif_index.append(scop)

            time_index = list(test.iloc[dif_index, :].index)

            time_indexes.append(time_index)

            info_list = pd.DataFrame({'时间': time_index, 'model_设备状态': [z] * len(time_index)})

            dif_indexs.append(dif_index)

            info_lists = pd.concat([info_lists, info_list])

        # 计算实时用电量并保存状态表

        test_devi = pd.read_csv(test_device, header=0, encoding='gbk')

        test_devi['time'] = pd.to_datetime(test_devi['time'])

        test_devi['实时用电量'] = test_devi['P'] * 100 / 3600

        info_lists = info_lists.merge(test_devi[['time', '实时用电量']],

                                      how='inner', left_on='时间', right_on='time')

        info_lists = info_lists.sort_values(by=['时间'], ascending=True)

        info_lists = info_lists.drop(['time'], axis=1)

        file_path = os.path.split(test_device)[1]

        info_lists.to_csv('../tmp/' + file_path[:3] + '状态表.csv', index=False, encoding='gbk')

        print(info_lists)

 

cw(glob.glob('../tmp/*test.csv'),

   glob.glob('../tmp/*predicted.csv'),

   glob.glob('../tmp/附件2/*设备数据1.csv'))

08 推荐阅读

在这里插入图片描述

正版链接:https://item.jd.com/13814157.html

《Python数据挖掘:入门、进阶与实用案例分析》是一本以项目实战案例为驱动的数据挖掘著作,它能帮助完全没有Python编程基础和数据挖掘基础的读者快速掌握Python数据挖掘的技术、流程与方法。在写作方式上,与传统的“理论与实践结合”的入门书不同,它以数据挖掘领域的知名赛事“泰迪杯”数据挖掘挑战赛(已举办10届)和“泰迪杯”数据分析技能赛(已举办5届)(累计1500余所高校的10余万师生参赛)为依托,精选了11个经典赛题,将Python编程知识、数据挖掘知识和行业知识三者融合,让读者在实践中快速掌握电商、教育、交通、传媒、电力、旅游、制造等7大行业的数据挖掘方法。

本书不仅适用于零基础的读者自学,还适用于教师教学,为了帮助读者更加高效地掌握本书的内容,本书提供了以下10项附加价值:
(1)建模平台:提供一站式大数据挖掘建模平台,免配置,包含大量案例工程,边练边学,告别纸上谈兵
(2)视频讲解:提供不少于600分钟Python编程和数据挖掘相关教学视频,边看边学,快速收获经验值
(3)精选习题:精心挑选不少于60道数据挖掘练习题,并提供详细解答,边学边练,检查知识盲区
(4)作者答疑:学习过程中有任何问题,通过“树洞”小程序,纸书拍照,一键发给作者,边问边学,事半功倍
(5)数据文件:提供各个案例配套的数据文件,与工程实践结合,开箱即用,增强实操性
(6)程序代码:提供书中代码的电子文件及相关工具的安装包,代码导入平台即可运行,学习效果立竿见影
(7)教学课件:提供配套的PPT课件,使用本书作为教材的老师可以申请,节省备课时间
(8)模型服务:提供不少于10个数据挖掘模型,模型提供完整的案例实现过程,助力提升数据挖掘实践能力
(9)教学平台:泰迪科技为本书提供的附加资源提供一站式数据化教学平台,附有详细操作指南,边看边学边练,节省时间
(10)就业推荐:提供大量就业推荐机会,与1500+企业合作,包含华为、京东、美的等知名企业

通过学习本书,读者可以理解数据挖掘的原理,迅速掌握大数据技术的相关操作,为后续数据分析、数据挖掘、深度学习的实践及竞赛打下良好的技术基础。
在这里插入图片描述

赠书活动

  • 🎁本次送书1~4本【取决于阅读量,阅读量越多,送的越多】👈
  • ⌛️活动时间:截止到2023-11月 3号
  • ✳️参与方式:关注博主+三连(点赞、收藏、评论)

转载自:https://blog.csdn.net/u014727709/article/details/131679523
欢迎start,欢迎评论,欢迎指正

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1135502.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

财务RPA机器人真的能提高效率吗?

财务部门作为一个公司的管理职能部门承担着一个公司在商业活动中各个方面的重要职责。理论上来说,一个公司的财务部门的实际工作包含但不限于对企业的盈亏情况进行评估、对风险进行预测、通过数据分析把握好公司的财务状况、税务管理等。 然而,实际上在…

分析主题帆软决策报表控件实现点击查询按钮后才能查询

点击「我的分析」即进入分析主题的管理界面,如下图所示: 2.1.1 分析列表区域 「分析列表」存放着当前用户创建的和其他用户协作给该用户的所有分析主题。 可以对分析列表和分析主题进行管理,详情参见:管理我的分析、管理分析主…

oa系统是什么?有哪些功能和作用?

本文将为大家讲解:1、oa系统是什么?有哪些功能和作用? 一、什么是OA系统 OA系统全称为Office Automation,即办公自动化系统。它是一种专门为企业和机构的日常办公工作提供服务的综合性软件平台,具有信息管理、流程管…

微信小程序实现文章内容详情

方案一、使用微信小程序官方提供的webview 前提已经在微信公众平台开发管理配置好了安全域名即: 方案二、把网页转成pdf直接展示 前提已经在微信公众平台开发管理配置好了安全域名即: 实现思路是发起网络请求拿到pdf下载地址,然后wx.download…

Linux (KDE) 中使用Network Settings设置静态ip

在 Linux (KDE) 中使用 Network Settings 设置s5静态IP详细教程 。 首先,打开 KDE 的设置面板。可以通过点击桌面上的设置图标,或者在开始菜单中搜索 “Settings” 并打开。 在设置面板中,点击 “Network” 选项。 接下来,你会看…

AD20生产Gerber文件

1、打开所要导出文件的PCB文件。并选择制造输出Gerber文件。 2、选择单位和格式 3、设置需要输出的图层 点击确定后,就可以生成Gerber文件。如下图所示。 4、生成钻孔文件 5,选择PCB窗口,跟第一步一样; 6,点击菜单 文…

讲座记录|1024学科周讲座分享

前言:2023年10月24日,我参加了学院举办的学科周活动,本篇文章记录一下参加本次活动的收获。 本次活动中,我主要参加了黄萱菁教授和高跃教授的讲座以及几位老师的Panel环节,然后聆听了网络空间安全分论坛的报告。在本次…

MySQL进阶(再论事务)——什么是事务 事务的隔离级别 结合MySQL案例详细分析

前言 MySQL最为最流行的开源数据库,其重要性不言而喻,也是大多数程序员接触的第一款数据库,深入认识和理解MySQL也比较重要。 本篇博客阐述MySQL的事务的定义和特性,原子性,一致性,隔离性,持久…

在 Windows 用 Chrome System Settings 设置代理

在 Windows 用 Chrome System Settings 设置代理 贴心提示:在设置代理之前,请确保您已经安装了 浏览器。 🔧 设置代理的详细步骤如下: 打开 浏览器,输入 //settings/system 并回车。 在「系统和网络设置」页面中&am…

突然发现柚子租车v1.42的小程序后端代码竟然内核文件全加密了!记录我的解密过程

因客户需求,需要定制租车小程序源码,找了很多要么很贵要么功能不满足需求,为啥这么折腾?还不是因为客户给的资金有限! 翻来覆去找到了柚子租车这个小程序功能各方面都能满足需求,然后我就尝试找最新版&…

Find My眼镜|苹果Find My技术与眼镜结合,智能防丢,全球定位

近年来,得益于国家政策的大力支持和技术的不断进步,眼镜产品的发展取得了长足的进步,正朝着高质量、多元化方向迈进。在这个趋势下,眼镜的功能性、时尚性、舒适性等方面都有了明显的提升,同时为了满足不同年龄段消费者…

[黑马程序员SpringBoot2]——基础篇2

目录: 模块创建实体类快速开发(lombok)数据层标准开发(基础CRUD)开启MP运行日志分页数据层标准开发(条件查询)业务层标准开发(基础CRUD)业务层标准开发(基于MyBatisPlus构建)表现层标准开发表现层数据一致性处理(R对象…

阿里云企业邮箱基于Spring Boot快速实现发送邮件功能

邮件在项目中经常会被用到,比如用邮件发送通知。比如,通过邮件注册、认证、找回密码、系统报警通知、报表信息等。本篇文章带大家通过SpringBoot快速实现一个发送邮件的功能。 邮件协议 下面先简单了解一下常见的邮件协议。常用的电子邮件协议有SMTP、…

xxl-job项目集成实战,全自动项目集成,可以直接使用到项目中

如果你看官方文档,在研究透,至少也得几天时间,如果你直接看我的文档,快速用到项目中,也就10分钟就搞好了。 xxl-job功能确实很强大,而且使用的人比较多,既然在使用xxl-job,那肯定是…

成为CSS选择器大师,让你的网页瞬间提升品味!

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 ⭐ 专栏简介 📘 文章引言 一、选…

【SpringCoud】

1,启动各个服务: 2,访问以下地址: http://localhost:5001/product/purchase/1/1/1000 浏览器输出: 控制台输出: 这里随机调用的端口号使用了轮询的方式 从服务治理中心拉去一份服务实例清单,然后通过某种负载均衡的算法选择具体的实例 Product核心逻辑代码: @RestController…

新生儿黄疸:原因、科普和注意事项

引言: 新生儿黄疸是许多新生儿面临的常见情况。虽然它通常是一种暂时的现象,但对于许多父母来说,这可能引发担忧。本文将科普新生儿黄疸的原因,提供相关信息,并为父母和监护人提供注意事项,以帮助他们更好…

如何在 SwiftUI 中创建悬浮操作按钮

文章目录 前言创建悬浮操作按钮悬浮按钮出现在屏幕的最前方悬浮按钮位于屏幕的右下角使悬浮按钮呈现圆形添加阴影总结 前言 悬浮操作按钮(Floating Action Button, FAB)是一种在 Android 和 Material Design 中使用的 UI 元素。它用于触发特定屏幕的主要…

百度迁徒数据爬虫方法

百度迁徙数据是由百度公司提供的免费开放数据集,主要包含了全国范围内各大城市的每日人口流入流出情况。这些数据来源于百度地图上的用户位置信息,通过计算得到每个小时的流入流出人数,并且可以按照省级、市级等多种维度进行分析。 百度迁徙 …

Modbus转MQTT以太网网关MQT-802主要特点和典型应用

随着社会的快速发展,物联网已经潜移默化地深入工控行业的各个领域,其高效的资源整合和强大的数据采集能力,深受客户的喜爱。上海泗博为实现客户在云端平台接收处理世界万物的信息以及实现远程控制,精心打造一款全新物联网产品&…