Kafka与Spark案例实践

news2024/11/15 15:34:34

1.概述

Kafka系统的灵活多变,让它拥有丰富的拓展性,可以与第三方套件很方便的对接。例如,实时计算引擎Spark。接下来通过一个完整案例,运用Kafka和Spark来合理完成。

2.内容

2.1 初始Spark

在大数据应用场景中,面对实时计算、处理流数据、降低计算耗时等问题时,Apache Spark提供的计算引擎能很好的满足这些需求。
Spark是一种基于内存的分布式计算引擎,其核心为弹性分布式数据集(Resilient Distributed Datasets简称,RDD),它支持多种数据来源,拥有容错机制,数据集可以被缓存,并且支持并行操作,能够很好的地用于数据挖掘和机器学习。
Spark是专门为海量数据处理而设计的快速且通用的计算引擎,支持多种编程语言(如Java、Scala、Python等),并且拥有更快的计算速度。

提示:
据Spark官方数据统计,通过利用内存进行数据计算,Spark的计算速度比Hadoop中的MapReduce的计算速度快100倍左右。

另外,Spark提供了大量的库,其中包含Spark SQL、Spark Streaming、MLlib、GraphX等。在项目开发的过程当中,可以在同一个应用程序中轻松地组合使用这些类库,如下图所示:

 2.2 Spark SQL

Spark SQL是Spark处理结构化数据的一个模块,。与Spark的RDD应用接口不同,Spark SQL提供的接口更加偏向于处理结构化的数据。在使用相同的执行引擎时,不同的应用接口或者编程语言在做计算时都是相互独立的,。这意味着,用户在使用时,可以很方便的地在不同的应用接口或编程语言之间进行切换。
Spark SQL很重要的一个优势就是,可以通过SQL语句来实现业务功能,。Spark SQL可以读取不同的存储介质,例如Kafka、Hive、HDFS等。
在使用编程语言执行一个Spark SQL语句时,执行后的结果会返回一个数据集,用户可以通过使用命令行、JDBC、ODBC的方式与Spark SQL进行数据交互。

提示:
JDBC是一个面向对象的应用程序接口,通过它可以访问各类关系型数据库。
ODBC是微软公司开放服务结构中有关数据库的一个组成部分,它制定并提供了一套访问数据库的应用接口。

2.3 Spark Streaming

Spark Streaming是Spark核心应用接口的一种扩展,它可以用于进行大规模数据处理、高吞吐量处理、容错处理等场景。同时,Spark Streaming支持从不同的数据源中读取数据,并且能够使用聚合函数、窗口函数等这类复杂算法来处理数据。
处理后的数据结果可以保存到本地文件系统(如文本)、分布式文件系统(如HDFS)、关系型数据库(如MySQL)、非关系型数据库(如HBase)等存储介质中。

2.4 MLlib

MLlib是Spark的机器学习(Machine Learning)类库,目的在于简化机器学习的可操作性和易扩展性。
MLlib由一些通用的学习算法和工具组成,其内容包含分类、回归、聚类、协同过滤等。

2.5 GraphX

GraphX是构建在Spark之上的图计算框架,它使用RDD来存储图数据,并提供了实用的图操作方法。
由于RDD的特性,GraphX高效的地实现了图的分布式存储和处理,可以应用于社交网络这类大规模的图计算场景。

3.操作Spark命令

在$SPARK_HOME/bin目录中,提供了一系列的脚本,例如spark-shell、spark-submit等。

进入到Hadoop集群,准备好数据源并将数据源上传Hadoop分布式文件系统(HDFS)中。然后使用Spark Shell的方式读取HDFS上的数据,并统计单词出现的频率,具体操作步骤如下。

1.准备数据源

(1)在本地创建一个文本文件,并在该文本文件中添加待统计的数据,具体操作命令如下。

# 新建文本文件
[hadoop@dn1 tmp]$ vi wordcount.txt

(2)然后,在wordcount.txt文件中添加待统计的单词,内容如下。

kafka spark
hadoop spark
kafka hadoop
kafka hbase
2.上传数据源到HDFS

(1)将本地准备好的wordcount.txt文件上传到HDFS中,具体操作命令如下。

# 在HDFS上创建一个目录
[hadoop@dn1 tmp]$ hdfs dfs -mkdir -p /data/spark
# 上传wordcount.txt到HDFS指定目录
[hadoop@dn1 tmp]$ hdfs dfs -put wordcount.txt /data/spark

(2)然后,执行HDFS查看命令,验证本地文件是否上传成功,具体操作命令如下。

# 查看上传的文件是否成功
[hadoop@dn1 tmp]$ hdfs dfs -cat /data/spark/wordcount.txt

若查看命令执行成功,输出结果如图所示:

 3.使用Spark Shell统计单词出现频

(1)进入到$SPARK_HOME/bin目录,然后运行./spark-shell脚本进入到Spark Shell控制台。

提示:
如果直接执行该脚本,则表示以本地模式单线程方式启动。
如果执行./spark-shell local[n]命令,则表示以多线程方式启动,其中变量n代表线程数。

(2)通过本地模式运行,等待Spark加载配置文件,加载完成后,输出结果

(3)统计单词出现的频率,具体实现如下:

复制代码

val wc = sc.textFile("hdfs://nna:9000/data/spark/wordcount.txt")
val stats=wc.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey(_+_)
stats.collect()

提示:
第一行代码表示,读取HDFS上待统计单词的原始数据;
第二行代码表示,实现统计单词出现频率的具体业务逻辑;
第三行代码表示,从弹性分布式数据集(RDD)中获取数据,并以数组的形式展示统计结果。

复制代码

(4)执行上述代码后,Spark Shell控制台输出结果如图所示:

 4.案例实践

Kafka是一种实时消息队列技术,通过Kafka中间件,可以构建实时消息处理平台来满足企业的实时类需求。
本案例以Kafka为核心中间件,以Spark作为实时计算引擎,来完成对游戏明细数据的实时统计。
以本项目为例,需要实时描绘当天游戏用户的行为轨迹,例如用户订单、用户分布、新增用户等指标数据。针对这类需求,可以将游戏用户实时产生的业务数据上报到Kafka消息队列系统进行存储,然后通过Spark流计算的方式来统计应用指标。最后,将统计后的业务结果形成报表或者趋势图进行展示,为制作数据方案者提供数据支持。

4.1 背景和价值

1. 背景

在实时应用场景中,与离线统计任务有所不同。它对时延的要求比较高,需要缩短业务数据计算的时间。对于离线任务来说,通常是计算前一天或者更早的业务数据。
现实业务场景中,很多业务场景需要实时查看统计结果。流计算能够很好的弥补这一不足之处,对于当天变化的流数据可以通过流计算(比如Flink、Spark Streaming、Storm等)后,及时呈现报表数据或趋势图。

2. 价值

这样一个实时计算项目能够实时掌握游戏用户的行为轨迹、活跃度。具体涉及的内容如下:

  1. 通过对游戏用户实时产生的业务数据进行实时统计,可以分析出游戏用户在各个业务模块下的活跃度、停留时间等。将这些结果形成报表或者趋势图,让以便能够实时地准确的掌握游戏用户的行为轨迹;
  2. 按小时维度将当天的实时业务数据进行统计,那么可以知道游戏用户在哪个时间段具有最高的访问量。利用这些数据可以针对这个时间段做一些推广活动,例如道具“秒杀”活动、打折优惠等,从而刺激游戏用户去充值消费。
  3. 将实时计算产生的结果,去发挥它应有的价值。在高峰时间段推广一些优惠活动后,通过实时统计的数据结果分析活动的效果,例如促销的“秒杀”活动、道具打折等这些活动是否受到游戏用户的喜爱。针对这些反馈效果,可以做出快速合理的反应。

4.2 实现流程

架构体系可以分为数据源、数据采集、数据存储、流计算、结果持久化、服务接口、数据可视化等,实现流程图如图所示:

1. 数据源

游戏用户通过移动设备或者浏览器操作游戏产生的记录,会实时上报到日志服务器进行存储,数据格式会封装成JSON对象进行上报,便于后续消费解析。

2. 数据采集

在日志服务器中部署Flume Agent来实时监控上报的业务日志数据,。当业务日志数据有更新(可通过文件MD5值、文件日期等来判断文件的变动)时,由Flume Agent启动采集任务,通过Flume Sink组件配置Kafka集群连接地址进行数据传输。

3. 数据存储

利用Kafka的消息队列特性来存储消息记录。将接收的数据按照业务进行区分,以不同的Topic来存储各种类型的业务数据。

4. 流计算

Spark拥有实时计算的能力,使用Spark Streaming将Spark和Kafka关联起来。
通过消费Kafka集群中指定的Topic来获取业务数据,并将获取的业务数据利用Spark集群来做实时计算。

5. 结果持久化

通过Spark计算引擎,将统计后的结果存储到数据库,方便可视化系统查询展示。
选用Redis和MySQL来作为持久化的存储介质,在Spark代码逻辑中使用对应的编程接口(如Java Redis API或Java MySQL API)将计算后的结果存储到数据库。

6. 数据接口

数据库中存储的统计结果需要对外共享,可以通过统一的接口服务对外提供访问。
可以选择Thrift框架来实现数据接口,编写RPC服务供外界访问。

提示:
Apache Thrift是一个软件框架,用来进行可扩展且跨编程语言服务的开发工作。
Apache Thrift结合了功能强大的软件堆栈和代码生成引擎,可以与Java、Go、Python、Ruby等编程语言进行无缝连接。
7. 可视化

从RPC服务中获取数据库中存储的统计结果。然后,在浏览器中将这些结果进行渲染,以报表和趋势图表的形式进行呈现。

5.核心逻辑实现

通过读取Kafka系统Topic中的流数据,对平台号进行分组统计。每隔10秒钟,将相同平台号下用户金额进行累加计算,并将统计后的结果写入到MySQL数据库。

5.1 MySQL工具类实现

复制代码

/**
 * 实现一个MySQL工具类.
 * 
 * @author smartloli.
 *
 *         Created by Jul 15, 2022
 */
public class MySQLPool {
    private static LinkedList<Connection> queues;         // 声明一个连接队列

    static {
        try {
            Class.forName("com.mysql.jdbc.Driver");     // 加载MySQL驱动
        } catch (ClassNotFoundException e) {
            e.printStackTrace();                        // 打印异常信息
        }
    }

    /** 初始化MySQL连接对象. */
    public synchronized static Connection getConnection() {
        try {
            if (queues == null) {                        // 判断连接队列是否为空
                queues = new LinkedList<Connection>();    // 实例化连接队列
                for (int i = 0; i < 5; i++) {
                    Connection conn = DriverManager
                         .getConnection("jdbc:mysql://nna:3306/game", "root", "123456");
                    queues.push(conn);                    // 初始化连接队列
                }
            }
        } catch (Exception e) {
            e.printStackTrace();                        // 打印异常信息
        }
        return queues.poll();                            // 返回最新的连接对象

    }

    /** 释放MySQL连接对象到连接队列. */
    public static void release(Connection conn) {
        queues.push(conn);                                // 将连接对象放回到连接队列
    }
}

复制代码

5.2 Spark逻辑实现

实现按平台号分组统计用户金额,具体实现见代码:

复制代码

/**
 * 使用Spark引擎来统计用户订单主题中的金额.
 * 
 * @author smartloli.
 *
 *         Created by Jul 14, 2022
 */
public class UserOrderStats {

    public static void main(String[] args) throws Exception {

        // 设置数据源输入参数
        if (args.length < 1) { 
            System.err.println("Usage: GroupId <file>");            // 打印提示信息
            System.exit(1);                                            // 退出进程
        }

        String bootStrapServers = "dn1:9092,dn2:9092,dn3:9092";        // 指定Kafka连接地址
        String topic = "user_order_stream";                            // 指定Kafka主题名
        String groupId = args[0];                                    // 动态获取消费者组名
        SparkConf sparkConf = new SparkConf()
                     .setMaster("yarn-client")
                 .setAppName("UserOrder");                        // 实例化Spark配置对象
        // 实例化一个SparkContext对象, 用来打印日志信息到控制台, 便于调试
        JavaSparkContext sc = new JavaSparkContext(sparkConf);
        sc.setLogLevel("WARN");

        // 创建一个流对象, 设置窗口时间为10秒
        JavaStreamingContext jssc = new JavaStreamingContext(sc, Durations.seconds(10));
        JavaInputDStream<ConsumerRecord<Object, Object>> streams =
         KafkaUtils.createDirectStream(jssc,
             LocationStrategies.PreferConsistent(),
             ConsumerStrategies.Subscribe(Arrays.asList(topic),
             configure(groupId, bootStrapServers)));                    // 获取流数据集

        // 将Kafka主题(user_order_stream)中的消息转化成键值对(key/value)形式
        JavaPairDStream<Integer, Long> moneys =
             streams.mapToPair(new PairFunction<ConsumerRecord<Object, Object>,
             Integer, Long>() {
            /** 序列号ID. */
            private static final long serialVersionUID = 1L;

            /** 执行回调函数来处理业务逻辑. */
            @Override
            public Tuple2<Integer, Long> call(ConsumerRecord<Object, Object> t)
                 throws Exception {
                JSONObject object = JSON.parseObject(t.value().toString());
                return new Tuple2<Integer, Long>(object.getInteger("plat"),
                 object.getLong("money"));
            }
        }).reduceByKey(new Function2<Long, Long, Long>() {
            /** 序列号ID. */
            private static final long serialVersionUID = 1L;

            @Override
            public Long call(Long v1, Long v2) throws Exception {
                return v1 + v2;                 // 通过平台号(plat)进行分组聚合
            }
        });

        // 将统计结果存储到MySQL数据库
        moneys.foreachRDD(rdd -> {
            Connection connection = MySQLPool.getConnection();    // 实例化MySQL连接对象
            Statement stmt = connection.createStatement();        // 创建一个操作MySQL的实例
            rdd.collect().forEach(line -> {
                int plat = line._1.intValue();                    // 获取平台号
                long total = line._2.longValue();                // 获取用户总金额
                // 将写入到MySQL的数据,封装成SQL语句
                String sql = String.format("insert into `user_order` (`plat`, `total`)
                 values (%s, %s)", plat, total);
                try {
                    // 调用MySQL工具类, 将统计结果组装成SQL语句写入到MySQL数据库
                    stmt.executeUpdate(sql); 
                } catch (SQLException e) {
                    e.printStackTrace();    // 打印异常信息
                }
            });

            MySQLPool.release(connection);     // 是否MySQL连接对象到连接队列
        });

        jssc.start();                        // 开始计算
        try {
            jssc.awaitTermination();         // 等待计算结束
        } catch (Exception ex) {
            ex.printStackTrace();            // 打印异常信息
        } finally {
            jssc.close();                    // 发生异常, 关闭流操作对象
        }
    }

    /** 初始化Kafka集群信息. */
    private static Map<String, Object> configure(String group, String brokers) {
        Map<String, Object> props = new HashMap<>();    // 实例化一个配置对象
        props.put("bootstrap.servers", brokers);        // 指定Kafka集群地址
        props.put("group.id", group);                    // 指定消费者组
        props.put("enable.auto.commit", "true");        // 开启自动提交
        props.put("auto.commit.interval.ms", "1000");    // 自动提交的时间间隔
        // 反序列化消息主键
        props.put("key.deserializer",
             "org.apache.kafka.common.serialization.StringDeserializer");
        // 反序列化消费记录
        props.put("value.deserializer",
             "org.apache.kafka.common.serialization.StringDeserializer");
        return props;                                    // 返回配置对象
    }

}

复制代码

5.3 执行提交

将打包好的应用程序上传到Spark集群的其中一个节点,然后通过spark-submit脚本来调度应用程序,具体操作命令如下。

# 执行应用程序
[hadoop@dn1 bin]$ ./spark-submit --master yarn-client --class org.smartloli.kafka.game.x.book_11.jubas.UserOrderStats --executor-memory 512MB --total-executor-cores 2 /data/soft/new/UserOrder.jar ke6

5.4 结果预览

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1134431.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

NineData:高效、安全、可靠的DB2数据管理平台

Db2 是老牌厂商 IBM 研发和维护的关系型数据库管理系统。作为一个拥有悠久历史的数据库系统&#xff0c;Db2 凭借它的高可靠、可扩展和高安全性等诸多优点&#xff0c;在如今的数据库市场依然占据相当大的份额。 对于诸多金融行业的企业而言&#xff0c; Db2 作为承载其核心业务…

一键自助建站系统api版系统源码

自助建站系统,一建建站系统api版,自动建站 安装推荐php7.2或7.2以下都行 可使用虚拟主机或者服务器进行搭建。 分站进入网站后台 域名/admin 初始账号123456qq.com密码123456 找到后台的网站设置 将主站域名及你在主站的通信secretId和通信secretKey填进去。 即可正常使用 通信…

Vue2 - 脚手架中整合 Vditor(全网唯一一篇帮你搞定)

目录 一、Vue2 框架整合 Vditor 1.1、安装 1.2、引入 Vditor 相关文件 1.3、配置 Vditor 1.4、使用 Vditor 一、Vue2 框架整合 Vditor 1.1、安装 npm install vditor --save 1.2、引入 Vditor 相关文件 import Vditor from "vditor" import "vditor/dist/…

Redis 命令 和 数据类型 您知道多少

文章目录 一、概述二、Redis 命令行客户端连接 Redis 服务器三、在 Redis 帮助命令的说明四、Redis 通用命令 generic4.1 通用命令说明4.1 keys 命令&#xff0c;列举出当前库的所有键4.2 type 命令&#xff0c;可以查看键对应值的类型4.3 object encoding 命令&#xff0c;查看…

SCT52240STDR双路 4A/4A 高速MOSFET/IGBT栅极驱动器, 可并联输出

SCT52240是是一款宽供电电压、双通道、高速、低测栅极驱动器&#xff0c;包括功率MOSFET&#xff0c;IGBT。单个通道能够提供高达4A拉电流和4A灌电流的轨到轨驱动能力&#xff0c;并实现轨到轨输出。高达24V宽电压范围提高功率器件开关瞬间栅极驱动的振铃幅值裕度。13ns输入输出…

java springboot2.7 写一个本地 pdf 预览的接口

依赖方面 创建的是 接口web项目就好了 然后包管理工具打开需要这些 import org.springframework.core.io.FileSystemResource; import org.springframework.core.io.Resource; import org.springframework.http.HttpHeaders; import org.springframework.http.MediaType; imp…

vue项目中将html转为pdf并下载

个人项目地址&#xff1a; SubTopH前端开发个人站 &#xff08;自己开发的前端功能和UI组件&#xff0c;一些有趣的小功能&#xff0c;感兴趣的伙伴可以访问&#xff0c;欢迎提出更好的想法&#xff0c;私信沟通&#xff0c;网站属于静态页面&#xff09; SubTopH前端开发个人…

【机器学习】sklearn特征值选取与处理

sklearn特征值选取与处理 文章目录 sklearn特征值选取与处理1. 调用数据集与数据集的划分2. 字典特征选取3. 英文文本特征值选取4. 中文特征值选取5. 中文分词文本特征抽取6. TfidfVectorizer特征抽取7. 归一化处理8. 标准化处理9. 过滤低方差特征10. 主成分分析11. 案例&#…

node实战——搭建带swagger接口文档的后端koa项目(node后端就业储备知识)

文章目录 ⭐前言⭐初始化项目⭐配置router目录自动扫描路由⭐swagger文件配置自动生成json文件⭐封装扫描目录路由加入swagger⭐配置项目入口总文件⭐运行效果⭐总结⭐结束⭐前言 大家好,我是yma16,本文分享关于node实战——搭建带swagger接口文档的后端koa项目(node后端就…

挑战吧,HarmonyOS应用开发工程师

一年一度属于工程师的专属节日1024&#xff0c;多重活动亮相啦~ 参与活动即有机会获得HUAWEI Freebuds 5i 耳机等精美礼品&#xff01; 点击“阅读原文”查看更多活动详情&#xff01;

SAD notes

ESKF 总结 prediction 更新误差先验 F F F通过3.42来算 得到 这里有点绕的一点是: 误差状态的 F F F牵涉到名义状态, 而名义状态又需要在时间上推进更新 其中, F中的名义状态的推进通过公式3.41得到, (名义状态不考虑误差, 这一点从3.41d, 3.41e可以看出, 误差状态只考虑…

“成为视频制作达人:高效为视频批量添加文字水印的技巧分享“

"作为一名视频制作达人&#xff0c;我经常需要处理大量的视频文件。有时候&#xff0c;为了提高视频的识别度和个性化&#xff0c;我会选择给视频添加文字水印。今天&#xff0c;我将分享如何使用“固乔剪辑助手”软件批量给视频添加文字水印的技巧。 首先&#xff0c;我们…

职业技术认证:《研发效能(DevOps)工程师》——开启职业发展新篇章

在互联网行业中&#xff0c;资质认证可以证明在该领域内的专业能力和知识水平。各种技术水平认证也是层出不穷&#xff0c;而考取具有公信力和权威性的认证是从业者的首选。同时&#xff0c;随着国内企业技术实力的提升和国家对于自主可控的重视程度不断提高&#xff0c;国产证…

极限号可以拿到连续函数里面吗?

可以&#xff0c;对于连续函数&#xff0c;极限号可以拿到函数的内部。 或者说&#xff0c;对于连续函数f&#xff0c;取映射f和取极限两种操作可以交换先后顺序。 要求&#xff0c;复合函数求极限&#xff0c;有两点要求&#xff1a;1.里面的极限在x–>x0存在&#xff0c;…

基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉 计算机竞赛

文章目录 0 简介1 二维码检测2 算法实现流程3 特征提取4 特征分类5 后处理6 代码实现5 最后 0 简介 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 该项目较为新颖&#xff0c;适合作为竞赛课…

idea 插件 checkstyle 规则示例和说明

idea 安装插件 idea 配置插件 checkstyle.xml 示例和说明 <?xml version"1.0"?> <!DOCTYPE module PUBLIC"-//Checkstyle//DTD Checkstyle Configuration 1.3//EN""https://checkstyle.org/dtds/configuration_1_3.dtd"><mod…

kafka3.X基本概念和使用

参考: 【kafka专栏】不用zookeeper怎么安装kafka集群-最新kafka3.0版本 一、kafka集群实例角色规划 在本专栏的之前的一篇文章《kafka3种zk的替代方案》已经为大家介绍过在kafka3.0种已经可以将zookeeper去掉。 上图中黑色代表broker&#xff08;消息代理服务&#xff09;&…

1221. 四平方和--(暴力,二分)

题目&#xff1a; 1221. 四平方和 - AcWing题库 思路1&#xff1a;暴力 暴力枚举 1.枚举顺序为从a到c&#xff0c;依次增大。 2.tn-a*a-b*b-c*c&#xff0c;求得dsqrt(t) 3.判断求出的d是否成立。d要求&#xff1a;d*dt&&d>c #include<iostream> #include&…

项目管理工具ConceptDraw PROJECT mac中文版自定义列功能

ConceptDraw PROJECT Mac是一款专业的项目管理工具&#xff0c;适用于MacOS平台。它提供了成功规划和执行项目所需的完整功能&#xff0c;包括任务和资源管理、报告和变更控制。 这款软件可以与ConceptDraw office集成&#xff0c;利用思维导图和数据可视化的强大功能来改进项目…

TCP / UDP 概念 + 实验(计网自顶向下)

Github源码 moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES: 《计算机网络&#xff0d;自顶向下方法(原书第6版)》编程作业&#xff0c;Wireshark实验文档的翻译和解答。 (github.com) 暂定打算分2步走&#xff0c;前置是中科大对应计网黑书的视频 第1步完成14个Wire…