Linux阻塞IO(高级字符设备二)

news2024/9/30 13:24:57

  阻塞IO属于同步 IO,阻塞IO在Linux内核中是非常常用的 IO 模型,所依赖的机制是等待队列。

一、等待队列介绍

  在 Linux 驱动程序中,阻塞进程可以使用等待队列来实现。等待队列是内核实现阻塞和唤醒的内核机制,以双循环链表为基础结构,由链表头和链表项两部分组成,分别表示等待队列头和等待队列元素
在这里插入图片描述
  等待队列头使用结构体 wait_queue_head_t 来表示,等待队列头是一个等待队列的头部,这个结构体定义在文件 include/linux/wait.h 里面,结构体内容如下所示:

struct _wait_queue_head
{
	spinlock_t lock; //自旋锁
	struct list_head task_list //链表头
};
typefef struct _wait_queue_head wait_queue_head_t;

  等待队列项使用结构体 wait_queue_t 来表示,等待队列项是等待队列元素,该结构体同样定义在文件 include/linux/wait.h 里面,结构体内容如下所示:

struct _wait_queue
{
unsigned int flags;
void *private;
wait_queue_func_t func;
struct list_head task_list;
};
typedef struct _wait_queue wait_queue_t;

二、等待队列 API

2.1、定义并初始化等待队列头

  等待队列要想被使用,第一步就是对等待队列头进行初始化,有俩种办法如下所示:

2.1.1、方法一

  使用 DECLARE_WAIT_QUEUE_HEAD 宏静态创建等待队列头,宏定义如下:

#define DECLARE_WAIT_QUEUE_HEAD(name) \
wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)

  参数 name 表示要定义的队列头名字。通常以全局变量的方式定义,如下所示:

DECLARE_WAIT_QUEUE_HEAD(head);
2.1.1、方法二

  使用 init_waitqueue_head 宏动态初始化等待队列头,宏定义如下:

#define init_waitqueue_head(q) \
do { \
static struct lock_class_key __key; \
 __init_waitqueue_head((q), #q, &__key); \
 } while (0)

  参数 q 表示需要初始化的队列头指针。使用宏定义如下所示:

wait_queue_head_t head; //等待队列头
init_waitqueue_head(&head); //初始化等待队列头指针

2.2、创建等待队列项

  一般使用宏 DECLARE_WAITQUEUE(name,tsk)给当前正在运行的进程创建并初始化一个等待队列项,宏定义如下:

#define DECLARE_WAITQUEUE(name, tsk) \
struct wait_queue_entry name = __WAITQUEUE_INITIALIZER(name, tsk)

  第一个参数 name 是等待队列项的名字,第二个参数 tsk 表示此等待队列项属于哪个任务(进程),一般设置为 current。在 Linux 内核中 current 相当于一个全局变量,表示当前进程。
  创建等待队列项如下所示:

DECLARE_WAITQUEUE(wait,current); //给当前正在运行的进程创建一个名为wait的等待队列项。
add_wait_queue(wq,&wait); //将 wait 这个等待队列项加到wq 这个等待队列当中

2.3、添加/删除队列

  当设备没有准备就绪(如没有可读数据)而需要进程阻塞的时候,就需要将进程对应的等待队列项添加到前面创建的等待队列中,只有添加到等待队列中以后进程才能进入休眠态。当设备可以访问时(如有可读数据),再将进程对应的等待队列项从等待队列中移除即可。
  等待队列项添加队列函数如下所示
  函数原型:
    void add_wait_queue(wait_queue_head_t *q,wait_queue_t *wait)
  函数功能:
    (通过等待队列头)向等待队列中添加队列项
  参数含义:
    wq_head 表示等待队列项要加入等待队列的等待队列头
    wq_entry 表示要加入的等待队列项函数
  返回值
    无
  等待队列项移除队列函数如下所示
  函数原型:
    void remove_wait_queue(wait_queue_head_t *q,wait_queue_t *wait)
  函数功能:
    要删除的等待队列项所处的等待队列头
  参数含义:
    第一个参数 q 表示等待队列项要加入等待队列的等待队列头
    第二个参数 wait 表示要加入的等待队列项函数
  返回值:
    无

2.4、等待事件

  除了主动唤醒以外,也可以设置等待队列等待某个事件,当这个事件满足以后就自动唤醒等待队列中的进程,使用如下所示的宏,是不可中断的阻塞等待。

#define __wait_event(wq_head, condition) (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, schedule())

  宏定义功能:
    不可中断的阻塞等待,让调用进程进入不可中断的睡眠状态,在等待队列里面睡眠直到condition 变成真,被内核唤醒。
  参数含义:
    第一个参数 wq: wait_queue_head_t 类型变量
    第二个参数 condition : 等待条件,为假时才可以进入休眠。如果condition 为真,则不会休眠
  除此之外,wait_event_interruptible 的宏是可中断的阻塞等待。

#define __wait_event_interruptible(wq_head, condition) ___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, schedule())

  宏含义功能:
    可中断的阻塞等待,让调用进程进入可中断的睡眠状态,直到condition 变成真被内核唤醒或信号打断唤醒。
  参数含义:
    第一个参数 wq :wait_queue_head_t 类型变量
    第二个参数 condition :等待条件。为假时才可以进入休眠。如果condition 为真,则不会休眠。

  wait_event_timeout() 宏也与 wait_event()类似.不过如果所给的睡眠时间为负数则立即返回.如果在睡眠期间被唤醒,且 condition 为真则返回剩余的睡眠时间,否则继续睡眠直到到达或超过给定的睡眠时间,然后返回 0。
  wait_event_interruptible_timeout() 宏与 wait_event_timeout()类似,不过如果在睡眠期间被信号打断则返回 ERESTARTSYS 错误码。
  wait_event_interruptible_exclusive() 宏同样和   wait_event_interruptible()一样,不过该睡眠的进程是一个互斥进程
  注意:调用的时要确认 condition 值是真还是假,如果调用 condition 为真,则不会休眠。

2.5、等待队列唤醒

  当设备可以使用的时候就要唤醒进入休眠态的进程,唤醒可以使用如下俩个函数

函数原型:
	wake_up(wait_queue_head_t *q)
函数功能:
	唤醒所有休眠进程
参数含义:
	q 表示要唤醒的等待队列的等待队列头
函数原型:
	wake_up_interruptible(wait_queue_head_t *q)
函数功能:
	唤醒可中断的休眠进程
参数含义:
	q 表示要唤醒的等待队列的等待队列头

三、等待队列使用方法

  步骤一:初始化等待队列头,并将条件置成假(condition=0)。
  步骤二:在需要阻塞的地方调用 wait_event(),使进程进入休眠状态。
  步骤三:当条件满足时,需要解除休眠,先将条件(condition=1),然后调用wake_up函数唤醒等待队列中的休眠进程。

四、阻塞IO驱动程序示例

4.1、阻塞IO驱动程序

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kdev_t.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include  <linux/wait.h>


struct device_test{
   
    dev_t dev_num;  //设备号
     int major ;  //主设备号
    int minor ;  //次设备号
    struct cdev cdev_test; // cdev
    struct class *class;   //类
    struct device *device; //设备
    char kbuf[32];
    int  flag;  //标志位
};


struct  device_test dev1;  

DECLARE_WAIT_QUEUE_HEAD(read_wq); //定义并初始化等待队列头

/*打开设备函数*/
static int cdev_test_open(struct inode *inode, struct file *file)
{
    file->private_data=&dev1;//设置私有数据
    printk("This is cdev_test_open\r\n");

    return 0;
}

/*向设备写入数据函数*/
static ssize_t cdev_test_write(struct file *file, const char __user *buf, size_t size, loff_t *off)
{
     struct device_test *test_dev=(struct device_test *)file->private_data;

    if (copy_from_user(test_dev->kbuf, buf, size) != 0) // copy_from_user:用户空间向内核空间传数据
    {
        printk("copy_from_user error\r\n");
        return -1;
    }
    test_dev->flag=1;//将条件置1
    wake_up_interruptible(&read_wq); //并使用wake_up_interruptible唤醒等待队列中的休眠进程

    return 0;
}

/**从设备读取数据*/
static ssize_t cdev_test_read(struct file *file, char __user *buf, size_t size, loff_t *off)
{
    
    struct device_test *test_dev=(struct device_test *)file->private_data;

    wait_event_interruptible(read_wq,test_dev->flag); //可中断的阻塞等待,使进程进入休眠态

    if (copy_to_user(buf, test_dev->kbuf, strlen( test_dev->kbuf)) != 0) // copy_to_user:内核空间向用户空间传数据
    {
        printk("copy_to_user error\r\n");
        return -1;
    }

  
    return 0;
}

static int cdev_test_release(struct inode *inode, struct file *file)
{
    
    return 0;
}

/*设备操作函数*/
struct file_operations cdev_test_fops = {
    .owner = THIS_MODULE, //将owner字段指向本模块,可以避免在模块的操作正在被使用时卸载该模块
    .open = cdev_test_open, //将open字段指向chrdev_open(...)函数
    .read = cdev_test_read, //将open字段指向chrdev_read(...)函数
    .write = cdev_test_write, //将open字段指向chrdev_write(...)函数
    .release = cdev_test_release, //将open字段指向chrdev_release(...)函数
};

static int __init chr_fops_init(void) //驱动入口函数
{
    /*注册字符设备驱动*/
    int ret;
    /*1 创建设备号*/
    ret = alloc_chrdev_region(&dev1.dev_num, 0, 1, "alloc_name"); //动态分配设备号
    if (ret < 0)
    {
       goto err_chrdev;
    }
    printk("alloc_chrdev_region is ok\n");

    dev1.major = MAJOR(dev1.dev_num); //获取主设备号
   dev1.minor = MINOR(dev1.dev_num); //获取次设备号

    printk("major is %d \r\n", dev1.major); //打印主设备号
    printk("minor is %d \r\n", dev1.minor); //打印次设备号
     /*2 初始化cdev*/
    dev1.cdev_test.owner = THIS_MODULE;
    cdev_init(&dev1.cdev_test, &cdev_test_fops);

    /*3 添加一个cdev,完成字符设备注册到内核*/
   ret =  cdev_add(&dev1.cdev_test, dev1.dev_num, 1);
    if(ret<0)
    {
        goto  err_chr_add;
    }
    /*4 创建类*/
  dev1. class = class_create(THIS_MODULE, "test");
    if(IS_ERR(dev1.class))
    {
        ret=PTR_ERR(dev1.class);
        goto err_class_create;
    }
    /*5  创建设备*/
  dev1.device = device_create(dev1.class, NULL, dev1.dev_num, NULL, "test");
    if(IS_ERR(dev1.device))
    {
        ret=PTR_ERR(dev1.device);
        goto err_device_create;
    }

return 0;

 err_device_create:
        class_destroy(dev1.class);                 //删除类

err_class_create:
       cdev_del(&dev1.cdev_test);                 //删除cdev

err_chr_add:
        unregister_chrdev_region(dev1.dev_num, 1); //注销设备号

err_chrdev:
        return ret;
}




static void __exit chr_fops_exit(void) //驱动出口函数
{
    /*注销字符设备*/
    unregister_chrdev_region(dev1.dev_num, 1); //注销设备号
    cdev_del(&dev1.cdev_test);                 //删除cdev
    device_destroy(dev1.class, dev1.dev_num);       //删除设备
    class_destroy(dev1.class);                 //删除类
}
module_init(chr_fops_init);
module_exit(chr_fops_exit);

4.2、阻塞IO使用API要点

DECLARE_WAIT_QUEUE_HEAD(read_wq); //定义并初始化等待队列头
wake_up_interruptible(&read_wq); //使用wake_up_interruptible唤醒等待队列中的休眠进程
wait_event_interruptible(read_wq,test_dev->flag); //可中断的阻塞等待,使进程进入休眠态

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1129493.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【嵌入式开源库】timeslice的使用,完全解耦的时间片轮询框架构

完全解耦的时间片轮询框架构 简介项目代码timeslice.htimeslice.clist.hlist.c 创建工程移植代码实验函数说明timeslice_task_inittimeslice_task_addtimeslice_tak_deltimeslice_get_task_num 结尾 简介 timeslice是一个时间片轮询框架&#xff0c;他是一个完全解耦的时间片轮…

力扣刷题 day54:10-24

1.十进制整数的反码 每个非负整数 N 都有其二进制表示。例如&#xff0c; 5 可以被表示为二进制 "101"&#xff0c;11 可以用二进制 "1011" 表示&#xff0c;依此类推。注意&#xff0c;除 N 0 外&#xff0c;任何二进制表示中都不含前导零。 二进制的反…

【Java 进阶篇】使用 Java 和 Jsoup 进行 XML 处理

XML&#xff08;可扩展标记语言&#xff09;是一种常用的数据交换格式&#xff0c;它被广泛用于在不同系统之间传递和存储数据。Java作为一种强大的编程语言&#xff0c;提供了多种方式来处理XML数据。其中&#xff0c;Jsoup 是一个流行的Java库&#xff0c;用于解析和操作XML文…

【数据结构练习题】消失的数字 --- 三种解法超详解

✨博客主页&#xff1a;小钱编程成长记 &#x1f388;博客专栏&#xff1a;数据结构练习题 &#x1f388;相关博文&#xff1a;添加逗号 消失的数字 1. &#x1f388;题目2. &#x1f388;解题思路✨方法一&#xff1a;先排序&#xff0c;再找缺失的值✨方法二&#xff1a;按位…

怎么禁止员工上班追剧

怎么禁止员工上班追剧 安企神终端安全管理软件下载使用 说到员工上班追究打游戏摸鱼&#xff0c;其实是一种不负责任的行为&#xff0c;这样的行为不仅会影响到工作效率&#xff0c;还会给周围的同事带来不好的工作氛围&#xff0c;会造成恶性循环&#xff0c;所以&#xff0…

windows下安装配置CGAL

一、下载安装Boost、CGAL 下载地址&#xff1a;https://sourceforge.net/projects/boost/files/boost-binaries/ Boost是CGAL的强制依赖项。SourceForge上提供了Boost的二进制版本&#xff08;此版本无须编译&#xff0c;可直接使用&#xff09;。Boost安装程序会同时安装Boos…

30天精通Nodejs--第二天:模块系统与npm

深入了解Node.js&#xff1a;模块系统与npm Node.js作为一款强大的服务器端JavaScript运行环境&#xff0c;模块系统和npm&#xff08;Node Package Manager&#xff09;是其成功的重要组成部分。为我们平时提供了便捷的工具和资源&#xff0c;使得在Node.js平台上构建应用变得…

五、Qt中的常用类

1. QString 字符串类 QString是Qt中的字符串类&#xff0c;与C/C不同的是&#xff0c;不再使用ASCII编码&#xff0c;而使用Unicode编码。因此一个字符不是8位的char&#xff0c;而是16位的QChar&#xff0c;这就是为什么之前一个汉字占用一个字符的原因。、 QString几乎向前兼…

使用jdbc技术连接数据库

连接数据库 <dependencies><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.28</version><scope>compile</scope></dependency> </dependencies> g…

腾讯云阿里云服务器mongdb数据库设置密码

避坑点 数据库绑定ip一定要设置0.0.0.0 设置超级管理员账号密码 1、可以使用navicat15连接mongodb数据库&#xff0c;进入命令行界面&#xff0c;输入以下命令 如出现找不到MongoDB shell为可执行文件&#xff0c;选择设置路径&#xff0c;路径为&#xff1a;MongoDB shell是…

【底层服务/编程功底系列】「网络通信体系」深入探索和分析TCP协议的运输连接管理的核心原理和技术要点

【底层服务/编程功底系列】「网络通信体系」深入探索和分析TCP协议的运输连接管理的核心原理和技术要点 TCP的运输连接管理TCP三次握手三次握手流程分析注意要点 TCP四次挥手TCP之保活计时器&#xff08;keepalive timer&#xff09;保活计时器&#xff08;keepalive timer&…

入门人工智能 —— 学习数据持久化、使用 Python 将数据保存到mysql(7)

入门人工智能 —— 学习数据持久化、使用 Python 将数据保存到mysql 什么是数据持久化&#xff1f;使用 Python 进行数据持久化步骤 1: 安装 MySQL步骤 2: 安装必要的 Python 库步骤 3: 连接到 MySQL 数据库步骤 4: 创建数据表步骤 5: 插入数据步骤 6: 查询数据步骤 7: 关闭连接…

管理类联考——英语二——翻译篇——定语从句的翻译方法

第三节 定语从句的翻译方法 定语从句的翻译主要分为限制性定语从句和非限制性定语从句的翻译。主要可以分为三种方法&#xff1a;合译法、分译法和转译法。 一、限制性定语从句的翻译方法 限制性定语从句所修饰的先行词自身意义不明确&#xff0c;被定语从句修饰限定后其意…

很多技术人就是会存在自己技术能力不错但是是茶壶里煮饺子倒不出来,如何解决?可以用笔和纸去画一画?

所描述的情况通常指的是一些技术人员虽然拥有丰富的技术知识和实践经验&#xff0c;但在表达和沟通方面存在困难&#xff0c;无法有效地将自己的思考和解决方案传达给他人。这种情况在技术领域相对常见&#xff0c;因为技术人员往往更注重技术深度而非沟通技巧。为了解决这个问…

Azure - 机器学习企业级服务概述与介绍

目录 一、什么是 Azure 机器学习&#xff1f;大规模生成业务关键型机器学习模型 二、Azure 机器学习适合哪些人群&#xff1f;三、Azure 机器学习的价值点加快价值实现速度协作并简化 MLOps信心十足地开发负责任地设计 四、端到端机器学习生命周期的支持准备数据生成和训练模型…

基于LiteOS的智慧农业案例实验分享

最近在指导一位读者朋友做毕业设计&#xff0c;该毕设是关于端云互通的&#xff0c;基于小熊派LiteOS华为云。 在指导他的过程中我也学到了不少东西&#xff0c;这里通过一个案例实验&#xff08;智慧农业&#xff09;给大家分享一些知识。 实验框图 相关模块简介 1、STM32L4…

管理类联考——英语二——翻译篇——名词性从句的译法

第四节 名词性从句的译法 英语的名词性从句有四种&#xff0c;分别是主语从句&#xff0c;宾语从句&#xff0c;表语从句和同位语从句。整体而言&#xff0c;名词性从句的理解和中文语序的理解大致相同&#xff0c;因此在英译汉时&#xff0c;它无须作太大的调整&#xff08;…

Centos安装gitlabce

服务器配置要求&#xff08;2c4g&#xff09; 1、 安装其他组件 yum install -y curl policycoreutils-python openssh perl2、 安装Postfix服务以发送电子邮件通知&#xff0c;启动服务并自启 yum -y install postfix systemctl enable postfix --now3、 安装gitlab&#xf…

Linux C语言开发-D5常量

指数形式的实数一般由尾数部分、字母e或E和指数部分组成。格式如下&#xff1a; 字符常量 常见的字符常量的ASCII码的值为&#xff1a; A&#xff1a;65&#xff1b;Z&#xff1a;90&#xff1b; &#xff1a;32&#xff1b;0&#xff1a;48&#xff1b; a&#xff1a;97&…

怎么进行设备维护与保养?智能巡检系统有什么用?

设备维护与保养需要遵循三个原则&#xff1a;故障设备全面分析的原则、故障设备深入检查的原则以及故障设备分析排查的原则。 一、故障设备全面分析的原则   检修人员在对设备维护与保养时&#xff0c;如果看到设备在运行中出现了异常的现象&#xff0c;要立刻停止设备的工作…